Rapid sequencing V14 - Plasmid sequencing (SQK-RBK114.24 or SQK-RBK114.96)

概览

  • The fastest and simplest protocol to sequence plasmid DNA
  • For multiplexing up to 96 samples
  • Library preparation time ~60 minutes
  • High yield
  • Fragmentation
  • Compatible with R10.4.1 flow cells

For Research Use Only

This is an Early Access product.
For more information about our Early Access programmes, please see this article on product release phases.

Document version: PRB_9188_v114_revE_17May2023

1. Overview of the protocol

重要

本试剂盒为早期试用产品

如需有关早期试用计划的更多信息,请参阅 本文了解产品的不同发布阶段。

请确保您始终使用最新版本的实验指南。

Rapid Barcoding Kit features

This kit is recommended for users who:

  • Wish to multiplex samples to reduce price per sample
  • Need a PCR-free method of multiplexing to preserve additional information such as base modifications
  • Require a short preparation time
  • Have limited access to laboratory equipment

Introduction to plasmid sequencing using the Rapid Barcoding Kit 24 or 96 V14

This protocol describes how to carry out rapid barcoding of plasmid DNA using the Rapid Barcoding Kit 24 or 96 V14 (SQK-RBK114.24 or SQK-RBK114.96) to sequence up to 96 plasmid samples. This method can be utilised for routine verification of plasmid constructs in molecular biology research, quality control of plasmid DNA samples in biotechnology applications, and analysis of engineered plasmids for gene therapy development. During library preparation, the plasmid DNA is tagmented with the Rapid Barcodes before the samples are pooled and cleaned up. Rapid sequencing adapters are attached to the DNA ends before sequencing on a flow cell.

We recommend new users to sequence for 12 hours, although a shorter run-time may be sufficient. After sequencing, perform downstream analysis using the EPI2ME Labs Clone Validation (wf-clone-validation) workflow. A report is generated with a consensus sequence from each plasmid. Detailed instructions for setting up MinKNOW and the EPI2ME Labs workflow are included.

Steps in the sequencing workflow:


Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents.
  • Download the software for acquiring and analysing your data.
  • Check your flow cell to ensure it has enough pores for a good sequencing run.

Library preparation

You will need to:

  • Tagment your DNA using the Rapid Barcodes; this simultaneously attaches a pair of barcodes to the fragments.
  • Pool the barcoded samples.
  • Attach the rapid sequencing adapters to the DNA ends.
  • Prime the flow cell, and load your DNA library into the flow cell.

Plasmid RBK114v2

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device into basecalled reads and will perform barcode demultiplexing.
  • Start the EPI2ME software and use the Clone Validation workflow for analysis.
重要

Compatibility of this protocol

This protocol should only be used in combination with:

  • Rapid Barcoding Kit 24 V14 (SQK-RBK114.24)
  • Rapid Barcoding Kit 96 V14 (SQK-RBK114.96)
  • R10.4.1 flow cells (FLO-MIN114)
  • Flow Cell Wash Kit (EXP-WSH004)
  • Flow Cell Priming Kit V14 (EXP-FLP004)
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Rapid Adapter Auxiliary V14 (EXP-RAA114)

2. Equipment and consumables

材料
  • 50 ng high molecular weight plasmid DNA per sample
  • 快速条形码测序试剂盒-24 V14 (SQK-RBK114.24)或 快速条形码测序试剂盒-96 V14 (SQK-RBK114.96)

耗材
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • 2 ml Eppendorf DNA LoBind 离心管
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)

仪器
  • MinION 或 GridION 测序仪
  • 盛有冰的冰桶
  • 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
  • 计时器
  • 热循环仪或恒温加热仪
  • 磁力架
  • Hula混匀仪(低速旋转式混匀仪)
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P2移液枪和枪头
  • 多通道移液枪和枪头
  • Qubit荧光计(或用于质控检测的等效仪器)
可选仪器
  • Standard gel electrophoresis equipment
  • Agilent生物分析仪(或等效仪器)

For this protocol, you will need 50 ng high molecular weight plasmid DNA per sample.

起始DNA

DNA质控

选择符合质量和浓度要求的起始DNA至关重要的。使用过少或过多的DNA,或者质量较差的DNA(如,高度碎片化、含有RNA或化学污染物的DNA)都会影响文库制备。

有关如何对DNA样品进行质控,请参考起始DNA/RNA质控实验指南

化学污染物

从原始样本中提取DNA的方法不同,可能会导致经纯化的DNA中所残留的化学污染物不同。这会影响文库的制备效率和测序质量。请在牛津纳米孔社区的 Contaminants(污染物)页面 了解更多信息。

重要

The Rapid Adapter (RA) used in this kit and protocol is not interchangeable with other sequencing adapters.

快速条形码测序试剂盒-24 V14(SQK-RBK114.24)内容物

RBK114.24 tubes

名称 缩写 管盖颜色 管数 每管溶液体积 (μl)
快速测序文库接头 RA 绿色 1 15
接头缓冲液 ADB 透明 1 100
AMPure XP 磁珠 AXP 琥珀色 2 1200
洗脱缓冲液 EB 黑色 1 500
测序缓冲液 SB 红色 1 700
文库颗粒 LIB 粉色 1 600
文库溶液 LIS 白色管盖,粉色标签 1 600
测序芯片冲洗液 FCF 蓝色 6 1170
测序芯片系绳 FCT 紫色 1 200
快速连接条形码 RB01-24 透明 24 15

本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。

快速条形码测序试剂盒-96 V14(SQK-RBK114.96)内容物

RBK114.96 tubes (1)

名称 缩写 管盖颜色 管数 溶液体积 (μl)
快速测序文库接头 RA 绿色 2 15
接头缓冲液 ADB 透明 1 100
AMPure XP 磁珠 AXP 琥珀色 3 1200
洗脱缓冲液 EB 黑色 1 1500
测序缓冲液 SB 红色 1 1700
文库颗粒 LIB 粉色 1 1800
文库溶液 LIS 白色管盖,粉色标签 1 1800
测序芯片冲洗液 FCF 透明 1 15500
测序芯片系绳 FCT 紫色 2 200
快速连接条形码 RB01-96 - 3 盘 每孔 8 µl

本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。

To maximise the use of the Rapid Barcoding Kits, the Rapid Adapter Auxiliary V14 (EXP-RAA114) and the Sequencing Auxiliary Vials V14 (EXP-AUX003) expansion packs are available.

These expansions provide additional library preparation and flow cell priming reagents to allow users to utilise any unused barcodes for those running in smaller subsets.

Both expansion packs used together will provide enough reagents for 6 library preparations.

Rapid Adapter Auxiliary V14 (EXP-RAA114) contents:

EXP-RAA114 tubes

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Rapid Adapter RA 1 Green 15
Adapter Buffer ADB 1 Clear 100

Sequencing Auxiliary Vials V14 (EXP-AUX003) contents:

EXP-AUX003 bottles

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Elution Buffer EB Black 2 500
Sequencing Buffer SB Red 2 700
Library Solution LIS White cap, pink label 2 600
Library Beads LIB Pink 2 600
Flow Cell Flush FCF Light blue label 2 8,000
Flow Cell Tether FCT Purple 2 200

Rapid barcode sequences

Component Sequence
RB01 AAGAAAGTTGTCGGTGTCTTTGTG
RB02 TCGATTCCGTTTGTAGTCGTCTGT
RB03 GAGTCTTGTGTCCCAGTTACCAGG
RB04 TTCGGATTCTATCGTGTTTCCCTA
RB05 CTTGTCCAGGGTTTGTGTAACCTT
RB06 TTCTCGCAAAGGCAGAAAGTAGTC
RB07 GTGTTACCGTGGGAATGAATCCTT
RB08 TTCAGGGAACAAACCAAGTTACGT
RB09 AACTAGGCACAGCGAGTCTTGGTT
RB10 AAGCGTTGAAACCTTTGTCCTCTC
RB11 GTTTCATCTATCGGAGGGAATGGA
RB12 CAGGTAGAAAGAAGCAGAATCGGA
RB13 AGAACGACTTCCATACTCGTGTGA
RB14 AACGAGTCTCTTGGGACCCATAGA
RB15 AGGTCTACCTCGCTAACACCACTG
RB16 CGTCAACTGACAGTGGTTCGTACT
RB17 ACCCTCCAGGAAAGTACCTCTGAT
RB18 CCAAACCCAACAACCTAGATAGGC
RB19 GTTCCTCGTGCAGTGTCAAGAGAT
RB20 TTGCGTCCTGTTACGAGAACTCAT
RB21 GAGCCTCTCATTGTCCGTTCTCTA
RB22 ACCACTGCCATGTATCAAAGTACG
RB23 CTTACTACCCAGTGAACCTCCTCG
RB24 GCATAGTTCTGCATGATGGGTTAG
RB25 GTAAGTTGGGTATGCAACGCAATG
RB26 CATACAGCGACTACGCATTCTCAT
RB27 CGACGGTTAGATTCACCTCTTACA
RB28 TGAAACCTAAGAAGGCACCGTATC
RB29 CTAGACACCTTGGGTTGACAGACC
RB30 TCAGTGAGGATCTACTTCGACCCA
RB31 TGCGTACAGCAATCAGTTACATTG
RB32 CCAGTAGAAGTCCGACAACGTCAT
RB33 CAGACTTGGTACGGTTGGGTAACT
RB34 GGACGAAGAACTCAAGTCAAAGGC
RB35 CTACTTACGAAGCTGAGGGACTGC
RB36 ATGTCCCAGTTAGAGGAGGAAACA
RB37 GCTTGCGATTGATGCTTAGTATCA
RB38 ACCACAGGAGGACGATACAGAGAA
RB39 CCACAGTGTCAACTAGAGCCTCTC
RB40 TAGTTTGGATGACCAAGGATAGCC
RB41 GGAGTTCGTCCAGAGAAGTACACG
RB42 CTACGTGTAAGGCATACCTGCCAG
RB43 CTTTCGTTGTTGACTCGACGGTAG
RB44 AGTAGAAAGGGTTCCTTCCCACTC
RB45 GATCCAACAGAGATGCCTTCAGTG
RB46 GCTGTGTTCCACTTCATTCTCCTG
RB47 GTGCAACTTTCCCACAGGTAGTTC
RB48 CATCTGGAACGTGGTACACCTGTA
RB49 ACTGGTGCAGCTTTGAACATCTAG
RB50 ATGGACTTTGGTAACTTCCTGCGT
RB51 GTTGAATGAGCCTACTGGGTCCTC
RB52 TGAGAGACAAGATTGTTCGTGGAC
RB53 AGATTCAGACCGTCTCATGCAAAG
RB54 CAAGAGCTTTGACTAAGGAGCATG
RB55 TGGAAGATGAGACCCTGATCTACG
RB56 TCACTACTCAACAGGTGGCATGAA
RB57 GCTAGGTCAATCTCCTTCGGAAGT
RB58 CAGGTTACTCCTCCGTGAGTCTGA
RB59 TCAATCAAGAAGGGAAAGCAAGGT
RB60 CATGTTCAACCAAGGCTTCTATGG
RB61 AGAGGGTACTATGTGCCTCAGCAC
RB62 CACCCACACTTACTTCAGGACGTA
RB63 TTCTGAAGTTCCTGGGTCTTGAAC
RB64 GACAGACACCGTTCATCGACTTTC
RB65 TTCTCAGTCTTCCTCCAGACAAGG
RB66 CCGATCCTTGTGGCTTCTAACTTC
RB67 GTTTGTCATACTCGTGTGCTCACC
RB68 GAATCTAAGCAAACACGAAGGTGG
RB69 TACAGTCCGAGCCTCATGTGATCT
RB70 ACCGAGATCCTACGAATGGAGTGT
RB71 CCTGGGAGCATCAGGTAGTAACAG
RB72 TAGCTGACTGTCTTCCATACCGAC
RB73 AAGAAACAGGATGACAGAACCCTC
RB74 TACAAGCATCCCAACACTTCCACT
RB75 GACCATTGTGATGAACCCTGTTGT
RB76 ATGCTTGTTACATCAACCCTGGAC
RB77 CGACCTGTTTCTCAGGGATACAAC
RB78 AACAACCGAACCTTTGAATCAGAA
RB79 TCTCGGAGATAGTTCTCACTGCTG
RB80 CGGATGAACATAGGATAGCGATTC
RB81 CCTCATCTTGTGAAGTTGTTTCGG
RB82 ACGGTATGTCGAGTTCCAGGACTA
RB83 TGGCTTGATCTAGGTAAGGTCGAA
RB84 GTAGTGGACCTAGAACCTGTGCCA
RB85 AACGGAGGAGTTAGTTGGATGATC
RB86 AGGTGATCCCAACAAGCGTAAGTA
RB87 TACATGCTCCTGTTGTTAGGGAGG
RB88 TCTTCTACTACCGATCCGAAGCAG
RB89 ACAGCATCAATGTTTGGCTAGTTG
RB90 GATGTAGAGGGTACGGTTTGAGGC
RB91 GGCTCCATAGGAACTCACGCTACT
RB92 TTGTGAGTGGAAAGATACAGGACC
RB93 AGTTTCCATCACTTCAGACTTGGG
RB94 GATTGTCCTCAAACTGCCACCTAC
RB95 CCTGTCTGGAAGAAGAATGGACTT
RB96 CTGAACGGTCATAGAGTCCACCAT

3. 计算机要求及软件 (1)

MinION Mk1B IT requirements

Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. Read more in the MinION IT Requirements document.

MinION Mk1C的IT配置要求

MinION Mk1C是一款集计算功能和触控屏幕于一体的便携式测序分析仪,它无需依赖任何额外设备,即可生成并分析纳米孔测序数据。您可以在 MinION Mk1C的IT配置要求文件中了解更多。

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.

Check your flow cell

We highly recommend that you check the number of pores in your MinION Flow Cell prior to starting a sequencing experiment. This should be done within three months of purchasing the flow cells. Oxford Nanopore Technologies will replace any flow cell with fewer than the number of pores in the table below, when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.

The minimum number of active pores in a MinION Flow Cell that is covered by warranty is 800 pores.

4. Library preparation

材料
  • 50 ng of high molecular weight plasmid DNA per sample
  • 快速连接条形码(RB01-24)或 快速连接条形码盘(RB01-96)
  • 快速测序文库接头(RA)
  • 接头缓冲液(ADB)
  • AMPure XP 磁珠(AXP)
  • Elution Buffer (EB)

耗材
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • 1.5 ml Eppendorf DNA LoBind离心管
  • 2 ml Eppendorf DNA LoBind 离心管
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)

仪器
  • 盛有冰的冰桶
  • 计时器
  • 热循环仪
  • 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
  • 磁力架
  • Hula混匀仪(低速旋转式混匀仪)
  • P1000移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • P2移液枪和枪头
  • 多通道移液枪和枪头

设定热循环仪的程序:30℃两分钟,后接80℃两分钟。

请根据下表,使用相应方法对各试剂进行解冻、离心和混匀:

试剂 1. 室温下解冻 2. 迷你离心机瞬时离心 3. 吹打混匀
快速连接条形码(RB01-24)或 快速连接条形码盘(RB01-96) 未冻结
快速测序文库接头(RA) 未冻结
AMPure XP磁珠(AXP) 临使用前,吹打或涡旋混匀
洗脱缓冲液(EB)
接头缓冲液(ADB) 涡旋混匀

Prepare the DNA in nuclease-free water, as follows. Approximately 50 ng of plasmid DNA is required in 9 µl of volume for each sample for barcoding.

  • Dilute your plasmid DNA samples with nuclease-free water to approximately 50 ng. See the table below for dilutions:
Starting Conc. Volume of DNA Volume of nuclease-free water Total volume
100 ng/µl 2 µl 34 µl 36 µl
90 ng/µl 2 µl 31 µl 33 µl
80 ng/µl 2 µl 27 µl 29 µl
70 ng/µl 3 µl 35 µl 38 µl
60 ng/µl 2 µl 20 µl 22 µl
50 ng/µl 2 µl 16 µl 18 µl
40 ng/µl 5 µl 31 µl 36 µl
30 ng/µl 5 µl 22 µl 27 µl
20 ng/µl 5 µl 13 µl 18 µl
10 ng/µl 10 µl 8 µl 18 µl
<5.56 ng/µl 9 µl 0 µl 9 µl
  • Pipette mix the dilutions, and spin down briefly.
  • Add 9 µl of volume for each sample into a 0.2 ml PCR tube or plate.

为计划上样于同一测序芯片的各样本选择不同的条形码。一个实验最多可为96个样本添加条码并混样测序。

请注意: 每个样本使用一种条形码。

In 0.2 ml thin-walled PCR tubes or plate, mix the following reagents. The Rapid Barcodes can be transferred using a multichannel pipette:

Reagent Volume
50 ng template DNA 9 μl
Rapid Barcodes (RB01-96, one for each sample) 1 μl
Total 10 μl

充分吹打混匀管中试剂,再瞬时离心。

将PCR管或96孔板在30℃下孵育两分钟,然后在80℃下孵育两分钟,随后短暂置于冰上冷却。

将PCR管或96孔板瞬时离心,收集管/板底的液体。

Pool all the barcoded samples into a clean 1.5 ml Eppendorf DNA LoBind tube, noting the total volume.

. Volume per sample For 12 samples For 24 samples For 48 samples For 96 samples
Total volume 10 μl 120 μl 240 μl 480 μl 960 μl

Resuspend the AMPure XP beads (AXP) by vortexing.

To the entire pooled barcoded sample, add an equal volume of resuspended AMPure XP Beads (AXP) and mix by flicking the tube.

. Volume per sample For 12 samples For 24 samples For 48 samples For 96 samples
Volume of AXP 10 μl 120 μl 240 μl 480 μl 960 μl

将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。

Prepare at least 3 ml of fresh 80% ethanol in nuclease-free water.

将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。

Keep the tube on the magnet and wash the beads with 1.5 ml of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

重复上述步骤。

将离心管瞬时离心后置于磁力架上。 用移液枪吸走残留的乙醇。 让磁珠在空气中干燥约30秒,但不要干至表面开裂。

Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Incubate for 10 minutes at room temperature.

将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。

Remove and retain 15 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Remove and retain the eluate which contains the DNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
  • Dispose of the pelleted beads
CHECKPOINT

取1µl洗脱样品,用Qubit荧光计定量。

Transfer 11 µl of the sample into a clean 1.5 ml Eppendorf DNA LoBind tube.

Note: We recommend transfering a maximum of 800 ng of the DNA library. If necessary, take forward only the necessary volume for 800 ng of DNA library and make up the rest of the volume to 11 µl using Elution Buffer (EB).

在一支1.5ml Eppendorf DNA LoBind离心管内,按下表稀释快速测序文库接头(RA),并吹打混匀:

试剂 体积
快速测序文库接头(RA) 1.5 μl
接头缓冲液(ADB) 3.5 μl
总体积 5 μl

向11 μl带条形码的DNA洗脱液中加入1 μl 经过稀释的快速测序文库接头(RA)。

轻弹离心管以充分混合,并瞬时离心。

Incubate the reaction for 5 minutes at room temperature.

步骤结束

制备好的文库即可用于芯片上样。请在上样前,始终将文库置于冰上。

5. Priming and loading the SpotON flow cell

材料
  • 测序芯片冲洗液(FCF)
  • 测序芯片系绳(FCT)
  • 文库溶液(LIS)
  • 文库颗粒(LIB)
  • 测序缓冲液(SB)

耗材
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • MinION 和 GridION测序芯片
  • 无核酸酶水(如ThermoFisher,AM9937)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • P1000 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
重要

请注意:本试剂盒仅兼容R10.4.1测序芯片(FLO-MIN114)。

提示

测序芯片的预处理及上样

我们建议所有新用户在首次运行测序芯片前,观看视频测序芯片的预处理及上样

使用文库溶液

对大多数测序实验,我们建议您使用文库颗粒(LIB)给测序芯片上样。然而,对于粘稠的文库,借助文库颗粒上样可能会比较困难,此时使用文库溶液(LIS)可能更为合适。

于室温下解冻测序缓冲液(SB)、文库颗粒(LIB)或文库溶液(LIS)、测序芯片系绳(FCT)和一管测序芯片冲洗液(FCF)。完全解冻后,涡旋振荡混匀,然后瞬时离心并置于冰上。

重要

为在MinION及GridION R10.4.1测序芯片(FLO-MIN114)上获得最优的测序表现并提高测序产出,我们推荐您向测序芯片预处理液中加入终浓度为0.2 mg/ml的牛血清白蛋白(BSA)。

请注意: 我们不推荐使用其它类型的白蛋白(例如重组人血清白蛋白)。

To prepare the flow cell priming mix with BSA, combine the following reagents and pipette mix at room temperature:

Note: The vials of Flow Cell Flush (FCF) in kit SQK-RBK114.24 and SQK-RBK114.96 have different formats. Please ensure you are using the correct volume when preparing your flow cell priming mix.

  • If using SQK-RBK114.24: The reagents can be added directly to the single-use tube of Flow Cell Flush (FCF).
  • If using SQK-RBK114.96: Prepare the reagents in a suitable tube.

Reagents Volume per flow cell
Flow Cell Flush (FCF) 1,170 µl
Bovine Serum Albumin (BSA) at 50 mg/ml 5 µl
Flow Cell Tether (FCT) 30 µl
Total volume 1,205 µl

打开MinION或GridION测序仪的盖子,将测序芯片插入金属固定夹的下方。用力向下按压芯片,以确保正确的热、电接触。

中文-测序芯片预处理上样1a

中文-测序芯片预处理上样1b

可选操作

为文库上样前,完成测序芯片检测,查看可用孔数目。

如此前已对测序芯片进行过质检,则此步骤可省略。

更多信息,请查看MinKNOW实验手册的 测序芯片质检 部分。

顺时针转动预处理孔孔盖,使预处理孔显露出来。

中文-测序芯片预处理上样2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。

中文-测序芯片预处理上样4

将含有文库颗粒的LIB管用移液枪吹打混匀。

重要

LIB管内的文库颗粒分散于悬浮液中。由于颗粒沉降速度非常快,因此请在混匀颗粒后立即使用。

对于大多数测序实验,我们建议您使用文库颗粒(LIB)。但如文库较为粘稠,您可考虑使用文库溶液(LIS)。

在一支新的1.5ml Eppendorf LoBind离心管中,按下表所示准备上样文库:

试剂 体积(每张测序芯片)
测序缓冲液(SB) 37.5 µl
文库颗粒(LIB),使用前即时混匀;或文库溶液(LIS) 25.5 µl
DNA文库 12 µl
总体积 75 µl

完成测序芯片的预处理:

  1. 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。 中文-测序芯片预处理上样5
  2. 通过预处理孔(而 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。 中文-测序芯片预处理上样6

临上样前,用移液枪轻轻吹打混匀制备好的文库。

通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。

中文-测序芯片预处理上样7

轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。

中文-测序芯片预处理上样8

中文-测序芯片预处理上样9

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

步骤结束

小心合上测序设备上盖并在MinKNOW上设置测序实验。

6. Data acquisition and basecalling

How to start sequencing

The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer or device. Further instructions for setting up a sequencing run can be found in the MinKNOW protocol.

We recommend setting up a sequencing run on a MinION or GridION device using the basecalling and barcoding recommendations outlined below. All other parameters can be left to their default settings.

Open the MinKNOW software using the desktop shortcut and log into the MinKNOW software using your Community credentials.

Click on your connected device.

min running

Set up a sequencing run by clicking Start sequencing.

Edit 1

Type in the experiment name, select the flow cell postition and enter sample ID. Choose FLO-MIN114 flow cell type from the drop-down menu.

Click Continue to kit selection.

Edit 2

Select the Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) or Rapid Barcoding Kit 96 V14 (SQK-RBK114.96).

Click Continue to Run Options to continue.

Edit 3

Change the run limit to 12 hours by clicking "Options" and changing the run limit value to 12. The other run settings can be left at the defaults.

Click Continue to basecalling to continue.

plasmid seq rbk114

plasmid seq rbk114 v1

Set up basecalling and barcoding using the following parameters:

  1. Ensure basecalling is ON.

  2. Next to "Models", click Edit options and choose High accuracy basecaller (HAC) from the drop-down menu.

  3. Ensure barcoding in ON.

  4. All other options can be kept to their default settings.

Click Continue to output and continue.

plasmid seq rbk114 v2

Set up the output format and filtering as follows:

  1. Select either .POD5 or .FAST5 (legacy) as the output format.

  2. Ensure .FASTQ is selected for basecalled reads.

  3. Ensure filtering is ON and read splitting is enabled. Other parameters can be kept to their default settings.

Click Continue to final review to continue.

plasmid seq rbk114 v3

Click "Start" to start sequencing.

You will be automatically navigated to the "Sequencing Overview" page to monitor the sequencing run.

plasmid seq rbk114 v4

7. Downstream analysis using EPI2ME Labs

Post-basecalling analysis

We recommend performing downstream analysis using EPI2ME Labs which facilitates bioinformatic analyses by allowing users to run Nextflow workflows in a desktop application. EPI2ME Labs maintains a collection of bioinformatic workflows which are curated and actively maintained by experts in long-read sequence analysis.

Further information about the available EPI2ME Labs workflows are available here, along with the Quick Start Guide to start your first bioinformatic workflow.

For the assembly of small plasmid sequences, we recommend using the wf-clone-validation workflow which requires Nextflow and Docker to be installed before running the workflow.

Open the EPI2ME app using the desktop shortcut.

Scroll down on the landing page and click on the wf-clone-validation workflow to download and confirm to install.

EPI2ME1

EPI2ME2

Navigate to the Workflows tab and click on wf-clone-validation.

EPI2ME3

Click on "Run this workflow" to open the launch wizard.

EPI2ME4

Set up your run by uploading your FASTQ file in the "Input Options". We recommend keeping the default settings for the other parameter options.

EPI2ME5

Click "Launch workflow".

Ensure all parameter options have green ticks.

EPI2ME7

Once the workflow finishes, a report will be produced.

Clone validation workflow report

A report is produced containing the results of the assembled plasmid sequences. The primary outputs of the workflow include:

  • a consensus .fasta file for each sample
  • a .csv showing the pass or fail status of each sample
  • a feature table containing annotations for each of the samples
  • an HTML report document detailing the primary findings of the workflow

A sample report can be viewed here.

Summary table and graph The summary graph shows the number of reads per barcode and the table shows the length of the consensus sequence for each barcode. These data may be used to identify the samples that may have dropped out of the sequence analysis due to insufficient sequence reads.

Plannotate For each barcode, read length statistics and a pLannotate plot is presented to illustrate the polished plasmid consensus sequence. In the sample report, barcode01 has been assembled into a 5385 bp consensus sequence. The unfilled features on the plot are incomplete features.

Feature table A feature table is also provided for each barcode to give descriptions of the annotated sequence which can be used to identify the precise location of the annotated features.

8. Ending the experiment

材料
  • 测序芯片清洗剂盒(EXP-WSH004)

完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于2-8℃保存。

您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南

请按照“回收程序”清洗好芯片,以便送回Oxford Nanopore。

您可在 此处找到回收测序芯片的说明。

请注意: 在将测序芯片寄回之前,请使用去离子水对每张芯片进行冲洗。

重要

如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。

9. Issues during DNA/RNA extraction and library preparation

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

低质量样本

现象 可能原因 措施及备注
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) 用户所使用的DNA提取方法未能达到所需纯度 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

请考虑将样品再次用磁珠纯化。
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) RNA在提取过程中降解 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。
RNA的片段长度短于预期 RNA在提取过程中降解 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。

我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染.

经AMPure磁珠纯化后的DNA回收率低

现象 可能原因 措施及备注
低回收率 AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。

2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。
低回收率 DNA片段短于预期 AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 SPRI cleanup
末端修复后的DNA回收率低 清洗步骤所用乙醇的浓度低于70% 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。

The VolTRAX run terminated in the middle of the library prep

Observation Possible cause Comments and actions
The green light was switched off

or

An adapter was used to connect the VolTRAX USB-C cable to the computer
Insufficient power supply to the VolTRAX The green LED signals that 3 A are being supplied to the device. This is the requirement for the full capabilities of the VolTRAX V2 device. Please use computers that meet the requirements listed on the VolTRAX V2 protocol.

The VolTRAX software shows an inaccurate amount of reagents loaded

Observation Possible cause Comments and actions
The VolTRAX software shows an inaccurate amount of reagents loaded Pipette tips do not fit the VolTRAX cartridge ports Rainin 20 μl or 30 μl and Gilson 10 μl, 20 μl or 30 μl pipette tips are compatible with loading reagents into the VolTRAX cartridge. Rainin 20 μl is the most suitable.
The VolTRAX software shows an inaccurate amount of reagents loaded The angle at which reagents are pipetted into the cartridge is incorrect The pipetting angle should be slightly greater than the cartridge inlet angle. Please watch the demo video included in the VolTRAX software before loading.

10. Issues during the sequencing run

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数

现象 可能原因 措施及备注
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 纳米孔阵列中引入了气泡 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 测序芯片没有正确插入测序仪 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 文库中残留的污染物对纳米孔造成损害或堵塞 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。

如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

MinKNOW脚本失败

现象 可能原因 措施及备注
MinKNOW显示 "Script failed”(脚本失败)
重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

读长短于预期

现象 可能原因 措施及备注
读长短于预期 DNA样本降解 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。

1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。

2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。DNA gel2 在上图中,样本1为高分子量DNA,而样本2为降解样本。

3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。

大量纳米孔处于不可用状态

现象 可能原因 Comments and actions
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示)

image2022-3-25 10-43-25 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。
样本中含有污染物 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加:

1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或
2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。

大量纳米孔处于失活状态

现象 可能原因 措施及备注
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) 测序芯片中引入了气泡 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。
大量纳米孔处于失活/不可用状态 文库中存在与DNA共纯化的化合物 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。

1. 请参考 植物叶片DNA提取方法
2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。
3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。
大量纳米孔处于失活/不可用状态 样本中含有污染物 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。

运行过程中过孔速度和数据质量(Q值)降低

现象 可能原因 措施及备注
运行过程中过孔速度和数据质量(Q值)降低 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。

温度波动

现象 可能原因 措施及备注
温度波动 测序芯片和仪器接触不良 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。

未能达到目标温度

现象 可能原因 措施及备注
MinKNOW显示“未能达到目标温度” 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION MK1B温度控制的更多信息,请参考此 FAQ (常见问题)文档。

Last updated: 6/25/2024

Document options

MinION