Nanopore-only Microbial Isolate Sequencing Solution (NO-MISS) - Rapid Barcoding Kit V14 (SQK-RBK114.24 or SQK-RBK114.96)

概览

End-to-end method outlining sample extraction, library preparation, sequencing and data analysis. This protocol:

  • Uses genomic DNA
  • Enables multiplexing of 4-24 samples
  • Takes ~60 minutes for library preparation
  • Includes DNA fragmentation
  • Is optimised for high output
  • Is compatible with R10.4.1 flow cells

For Research Use Only
This is an Early Access product For more information about our Early Access programmes, please see this article on product release phases.

Document version: ISO_9205_v114_revB_20Mar2024

1. Overview of the protocol

重要

本试剂盒为早期试用产品

如需有关早期试用计划的更多信息,请参阅 本文了解产品的不同发布阶段。

请确保您始终使用最新版本的实验指南。

Introduction to the Nanopore-only Microbial Isolate Sequencing Solution (NO-MISS) protocol

This end to end protocol describes our Nanopore-Only Microbial Isolate Sequencing Solution (NO-MISS): a flexible approach allowing sequencing of 4 to 24 microbial isolate genomes per MinION Flow Cell, generating a minimum coverage of 50x per genome.

The 50X coverage threshold is sufficient for downstream analyses including: accurate assembly and plasmid resolution, AMR profiling, core genome (cg) and whole genome (wg) multi-locus sequence typing (MLST), and cg/wgSNP typing. You can analyse your sequencing data using EPI2ME, which provides a user-friendly bioinformatics workflow.

We provide multiple DNA extraction approaches, depending on requirements, and starting organism (bacteria, fungi/yeast). These are key in achieving reliable flow cell output and genome coverage. The sample specific extraction methods use NEB Monarch Genomic Purification Kit, while the universal method uses a bead-beating method and the Maxwell RCS PureFood Pathogen Kit.

The extracted gDNA is then tagmented and sequenced using our Rapid Barcoding Kit (SQK-RBK114.24 or SQK-RBK114.96). Up to 24 samples per sequencing experiment for bacterial isolates (up to 7 Mb genomes) and up to 8 samples for fungi/yeast isolates can be processed to achieve the 50x coverage threshold. Use a minimum of four barcodes per run to maintain performance.
Detailed instructions for setting up the sequencing run on MinKNOW and downstream analysis are also included for a complete end-to-end protocol. We recommend sequencing up to 72 hours and generating at least 50x coverage per sample (approx. 0.5 Gb per barcode, assuming 5 Mb genome).

We recommend updating MinKNOW to the latest version prior to starting a sequencing run. The basecalling model v4.3 found in Dorado 0.5.0 onwards provides improved accuracy for bacterial DNA and is included in MinKNOW release v24.02 or newer.

For more information on updating MinKNOW, please refer to our MinKNOW protocol.

End-to-end workflow overview

NO MISS protocol workflow overview

Steps in the sequencing workflow:


Prepare for your experiment

You will need to:

  • Extract your DNA, and check quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents.
  • Download the software for acquiring and analysing your data.
  • Check your flow cell to ensure it has enough pores for a good sequencing run.

Sample preparation

Using the relevant gDNA extraction method, you will need to lyse your cells, extract your gDNA, and quantify the DNA:


  • Manual column-based methods:
  • Bacteria gDNA extraction:
    • For bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Enterococcus faecalis, and Bacillus subtilis or staphylococci such as Staphylococcus aureus, and Staphylococcus epidermidis.
  • Hard to lyse organisms gDNA extraction:
    • For bacteria, such as Mycobacterium tuberculosis.
  • Fungi gDNA extraction:
    • For fungi/yeast, such as Candida albicans, Candida tropicalis, and Candida parapsilosis.

Library preparation

The table below is an overview of the steps required in the library preparation, including timings and stopping points.

Library preparation step Process Time Stop option
DNA barcoding Tagmentation of the DNA using the Rapid Barcoding Kit V14 15 minutes 4°C overnight
Sample pooling and clean-up Pooling of barcoded libraries and AMPure XP Bead clean-up 25 minutes 4°C overnight
Adapter ligation Attach the sequencing adapters to the DNA ends 5 minutes We strongly recommend sequencing your library as soon as it is adapted
Priming and loading the flow cell Prime the flow cell and load the prepared library for sequencing 5 minutes

SQK-RBK110.96 gDNA workflow v1

Sequencing and analysis You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data to basecall and demultiplex the barcoded reads.
  • Perform downstream analysis uing the isolate mode of the wf-bacterial-genomes workflow in EPI2ME.
重要

Compatibility of this protocol

This protocol should only be used in combination with:

  • Rapid Barcoding Kit 24 V14 (SQK-RBK114.24)
  • Rapid Barcoding Kit 96 V14 (SQK-RBK114.96)
  • R10.4.1 flow cells (FLO-MIN114)
  • Flow Cell Wash Kit (EXP-WSH004)
  • Flow Cell Priming Kit V14 (EXP-FLP004)
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Rapid Adapter Auxiliary V14 (EXP-RAA114)
  • MinION Mk1B - MinION IT Requirements document

2. Equipment and consumables

材料
  • 200 ng of extracted gDNA per sample
  • 快速条形码测序试剂盒-24 V14 (SQK-RBK114.24)或 快速条形码测序试剂盒-96 V14 (SQK-RBK114.96)

耗材
  • MinION及GridION测序芯片
  • Monarch® Genomic DNA Purification Kit (NEB, T3010S/L)
  • Qubit 1x dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q33230)
  • Qubit 1x dsDNA BR Assay Kit (ThermoFisher, cat # Q33265)
  • PowerBead Pro tube (Qiagen, 19301)
  • BashingBead Buffer (Zymo, D6001-3-40)
  • Phosphate-buffered saline (PBS), pH 7.4 (Thermo Fisher, 10010023)
  • TE buffer (Sigma, 8890-100ML)
  • 5 M sodium chloride solution (Sigma, S6546)
  • CTAB buffer (Promega, MC1411)
  • (Optional) Extra reagents for custom CTAB buffer:
  • CTAB (Sigma, H6269)
  • 0.5 M EDTA (Fisher Scientific, 11568896)
  • Trizma® hydrochloride solution (Sigma, T2819)
  • Extra reagents for bacteria gDNA extraction:
  • Lysozyme human (Sigma, L1667)
  • Sodium dodecyl sulfate (SDS) at 10% v/v (Sigma, 71736)
  • Trizma® hydrochloride solution (Sigma, T2819)
  • Achromopeptidase (Sigma, A3547)
  • Extra reagents and consumables for hard to lyse organisms gDNA extraction:
  • Lysozyme human (Sigma, L1667)
  • Empty FastPrep® 2mL Lysing Matrix tubes (MP Biomedicals, 115076200)
  • Screw Cap for 2 mL Lysing Matrix tubes (MP Biomedicals, 115067005)
  • Glass beads, 4 mm (MP Biomedicals, 116914801)
  • Extra reagents for fungi gDNA extraction:
  • MetaPolyzyme (Sigma, MAC4L-5MG)
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • Extra reagents for automated bead-beating gDNA extraction:
  • RNase A (QIAGEN, 19101)
  • Proteinase K (QIAGEN, 19131)
  • Maxwell® RSC PureFood Pathogen kit (Promega, AS1660)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • PCR plate seals
  • 96-well PCR plate, semi-skirted (e.g. Starlab, I1402-9800)
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • 2 ml Eppendorf DNA LoBind 离心管
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • Qubit™ 分析管(Invitrogen, Q32856)

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • Vortex Adapter (Qiagen 13000-V1-24)
  • 涡旋混匀仪
  • 热循环仪
  • 计时器
  • Thermomixer
  • 磁力架
  • 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
  • Eppendorf 5424 离心机(或等效器材)
  • Qubit荧光计(或用于质控检测的等效仪器)
  • 多通道移液枪和枪头
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P2移液枪和枪头
  • 盛有冰的冰桶
  • Extra equipment for automated bead-beating gDNA extraction:
  • Maxwell® RSC Instrument (MPBiomedicals, AS4500)
可选仪器
  • Hula混匀仪(低速旋转式混匀仪)
重要

The above list of materials, consumables, and equipment is for all the extraction methods in the sample preparation section, as well as the library preparation section of the protocol. You will only need the consumables for the relevant extraction method for your sample input and the library preparation section.

For this protocol, the following inputs are required per sample:

Input requirements per sample for the extraction methods:


For library preparation, 200 ng in 10 µl of extracted gDNA per sample is required.

Third-party reagents

Depending on the extraction protocol used, not all third-party reagents are required.

We have validated and recommend the use of all the third-party reagents used in this protocol. Alternatives have not been tested by Oxford Nanopore Technologies.

For all third-party reagents, we recommend following the manufacturer's instructions to prepare the reagents for use.

Custom CTAB buffer

Custom CTAB buffer can be prepared instead of purchasing. Below are the reagents and concentrations required, with suggested examples with excess.

Reagent Stock Final concentration Volume for 12 samples Volume for 24 samples
CTAB - 2% v/v 60 µl 120 µl
EDTA 0.5 M 40 mM 240 µl 480 µl
Sodium chloride 5 M 1.4 M 833 µl 1,666 µl
Trizma hydrochloride solution, pH 8 1 M 100 mM 300 µl 600 µl
Nuclease-free water - - 1567 µl 3,134 µl
Total - - 3,000 µl 6,000 µl

For staphylococcal inputs

Staphylococcal Lysis Buffer (SLB) is required for the bacterial gDNA extraction method for staphylococcal inputs.

Reagent Stock Final concentration Volume for 12 samples with excess Volume for 24 samples with excess
Trizma hydrochloride solution, pH 9 1 M 100 mM 150 ul 300 µl
Sodium chloride 5 M 10 mM 3 ul 6 µl
SDS 10% v/v 0.1% v/v 15 ul 30 µl
Nuclease-free water - - 1332 ul 2664 µl
Total volume - - 1,500 ul 3,000 µl

The SDS in the Staphylococcal Lysis Buffer (SLB) is essential for preventing the degradation of staphylococci DNA. Exclusion of SDS from the buffer results in a larger smear of DNA when run on a gel.

起始DNA

DNA质控

选择符合质量和浓度要求的起始DNA至关重要的。使用过少或过多的DNA,或者质量较差的DNA(如,高度碎片化、含有RNA或化学污染物的DNA)都会影响文库制备。

有关如何对DNA样品进行质控,请参考起始DNA/RNA质控实验指南

化学污染物

从原始样本中提取DNA的方法不同,可能会导致经纯化的DNA中所残留的化学污染物不同。这会影响文库的制备效率和测序质量。请在牛津纳米孔社区的 Contaminants(污染物)页面 了解更多信息。

测序芯片质检

我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片三个月之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :

测序芯片 芯片上的活性孔数确保不少于
Flongle 测序芯片 50
MinION/GridION 测序芯片 800
PromethION 测序芯片 5000

** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。

重要

The Rapid Adapter (RA) used in this kit and protocol is not interchangeable with other sequencing adapters.

快速条形码测序试剂盒-24 V14(SQK-RBK114.24)内容物

RBK114.24 tubes

名称 缩写 管盖颜色 管数 每管溶液体积 (μl)
快速测序文库接头 RA 绿色 1 15
接头缓冲液 ADB 透明 1 100
AMPure XP 磁珠 AXP 琥珀色 2 1200
洗脱缓冲液 EB 黑色 1 500
测序缓冲液 SB 红色 1 700
文库颗粒 LIB 粉色 1 600
文库溶液 LIS 白色管盖,粉色标签 1 600
测序芯片冲洗液 FCF 蓝色 6 1170
测序芯片系绳 FCT 紫色 1 200
快速连接条形码 RB01-24 透明 24 15

本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。

快速条形码测序试剂盒-96 V14(SQK-RBK114.96)内容物

RBK114.96 tubes (1)

名称 缩写 管盖颜色 管数 溶液体积 (μl)
快速测序文库接头 RA 绿色 2 15
接头缓冲液 ADB 透明 1 100
AMPure XP 磁珠 AXP 琥珀色 3 1200
洗脱缓冲液 EB 黑色 1 1500
测序缓冲液 SB 红色 1 1700
文库颗粒 LIB 粉色 1 1800
文库溶液 LIS 白色管盖,粉色标签 1 1800
测序芯片冲洗液 FCF 透明 1 15500
测序芯片系绳 FCT 紫色 2 200
快速连接条形码 RB01-96 - 3 盘 每孔 8 µl

本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。

3. Sample extraction method selection

Optimised extraction method decision

We have developed four optimised extraction methods to generate high quality genomic DNA from your cell cultures, allowing maximised sequencing output using this method.

What extraction method is right for me?

Decision tree extract methods SVG


Sample extraction method Sample type Sample Input Expected yield Expected DNA Integrity Number (DIN) Average sequencing read lengths Extraction kits used
Universal bead-beating gDNA extraction Universal applications: bacteria, fungi or yeast 1 ml liquid overnight culture (~1 x 10^8 – 10^9 cfu/ml) or half of a loop of colonies from a plate >200 ng/µl per sample 7-9 ~4-7 kb QIAGEN PowerBead Tube and Promega Maxwell® RSC PureFood Pathogen kit
Bacteria gDNA extraction Bacterial 200 µl liquid overnight culture (~1 x 10^8 – 10^9 cfu/ml) or 1/8 of a loop of colonies from a plate ~15-20 ng/µl per sample 9 >7 kb - Size will vary based on sample input species NEB Monarch Genomic DNA Purification Kit
Hard to lyse organisms gDNA extraction Mycobacterium tuberculosis
(or hard to extract bacterial samples)
5 – 10 mg cells from solid or liquid media ~15-40 ng/µl per sample 8 >7 kb - Size will vary based on sample input species NEB Monarch Genomic DNA Purification Kit
Fungi gDNA extraction Fungi or yeast 2 ml of ~1 x 10^7 cfu/ml overnight culture or a full 10 µl inoculating loop from a plate ~40 ng/µl per sample N/A >7 kb - Size will vary based on sample input species NEB Monarch Genomic DNA Purification Kit

Note: The yield, DIN and sequencing read length of extracted DNA may vary depending on sample quality and species. Please ensure you are following the correct method and using high-quality sample inputs.

Follow the links in the table above for the extraction methods documentation.
Alternatively, these extraction methods can be found in the Extraction Protocols tab in the Documentation space on the Nanopore Community

4. Library preparation

材料
  • 200 ng of extracted gDNA per sample
  • 快速连接条形码(RB01-24)或 快速连接条形码盘(RB01-96)
  • 快速测序文库接头(RA)
  • 接头缓冲液(ADB)
  • AMPure XP 磁珠(AXP)
  • Oxford Nanopore测序试剂盒中的洗脱缓冲液(EB)

耗材
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • Eppendorf低吸附twin.tec®96孔PCR板,半裙边(Eppendorf™,0030129504)带热封
  • 0.2 ml 薄壁PCR管
  • 1.5 ml Eppendorf DNA LoBind离心管
  • 2 ml Eppendorf DNA LoBind 离心管
  • Qubit™ 分析管(Invitrogen, Q32856)

仪器
  • 盛有冰的冰桶
  • 计时器
  • 热循环仪
  • 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
  • 磁力架
  • Hula混匀仪(低速旋转式混匀仪)
  • Qubit荧光计(或用于质控检测的等效仪器)
  • P1000移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • P2移液枪和枪头
  • 多通道移液枪和枪头

Sample throughput and Rapid Barcode use requirements with NO-MISS

This method has been developed to process 24 samples with a genome size of up to 7 Mb simultaneously.

For samples with a larger genome size ( >7 Mb), we recommend lowering the number of samples to be barcoded and sequenced simultaneously to 8 samples.

For optimal output, we currently do not recommend using fewer than 4 barcodes.

Note: This method provides a standardised process for sample throughput that we have validated in-house. These settings will be applicable to the majority of use-cases and we recommend all new users to follow the recommended method. Experienced users can adjust sample throughput (4 to 48 barcoded samples) based on sample quality, genome size, and coverage requirements.

CHECKPOINT

测序芯片质检

我们强烈建议您在开始文库制备前,对测序芯片的活性纳米孔数进行质检,以确保测序实验顺利运行。

详情请参阅 MinKNOW 实验指南中的 测序芯片质检说明

设定热循环仪的程序:30℃两分钟,后接80℃两分钟。

请根据下表,使用相应方法对各试剂进行解冻、离心和混匀:

试剂 1. 室温下解冻 2. 迷你离心机瞬时离心 3. 吹打混匀
快速连接条形码(RB01-24)或 快速连接条形码盘(RB01-96) 未冻结
快速测序文库接头(RA) 未冻结
AMPure XP磁珠(AXP) 临使用前,吹打或涡旋混匀
洗脱缓冲液(EB)
接头缓冲液(ADB) 涡旋混匀

Prepare the DNA in nuclease-free water.

  1. Transfer 200 ng of genomic DNA per sample into 0.2 ml thin-walled PCR tubes or an Eppendorf twin.tec® PCR plate 96 LoBind.
  2. Adjust the volume of each sample to 10 μl with nuclease-free water.
  3. Pipette mix the tubes thoroughly and spin down briefly in a microfuge.

Select a unique barcode for every sample to be run together on the same flow cell.

Note: Use one barcode per sample.

在各0.2ml的薄壁PCR管或Eppendorf低吸附 twin.tec®96孔PCR板的孔内,混合以下试剂:

试剂 每个样本的体积
来自前一步骤的200ng的gDNA 10 μl
快速连接条形码(RB01-24 or RB01-96,每个样本使用一种条形码) 1.5 μl
Total 11.5 μl

充分吹打混匀管中试剂,再瞬时离心。

将PCR管或96孔板在30℃下孵育两分钟,然后在80℃下孵育两分钟,随后短暂置于冰上冷却。

将PCR管或96孔板瞬时离心,收集管/板底的液体。

Pool all barcoded samples in a clean 2 ml Eppendorf DNA LoBind tube, noting the total volume.

. Volume per sample For 24 samples
Total volume 11.5 µl 276 µl

涡旋振荡以重悬AMPure XP磁珠(AXP)。

Add an equal volume of resuspended AMPure XP Beads (AXP) to the entire pooled barcoded sample, and mix by flicking the tube.

. Volume per sample For 24 samples
Volume of AMPure XP Beads (AXP) added 11.5 µl 276 µl

将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育10分钟。

准备不少于2ml的新制备的80%乙醇(用无核酸酶水配制)。

将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。

保持试管在磁力架上不动,以1ml新鲜制备的80%乙醇洗涤磁珠。小心不要扰动磁珠。用移液枪将乙醇吸走并弃掉。

重复上述步骤。

将离心管瞬时离心后置于磁力架上。 用移液枪吸走残留的乙醇。 让磁珠在空气中干燥约30秒,但不要干至表面开裂。

Remove the tube from the magnetic rack and resuspend the pellet by pipetting in 15 µl Elution Buffer (EB). Incubate for 10 minutes at room temperature.

将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。

将剩余的全部l洗脱液转移至一支新的1.5ml Eppendorf DNA LoBind管中。

  • 将含有DNA文库的洗脱液转移至一支新的1.5ml Eppendorf DNA LoBind管中
  • 将磁珠丢弃
可选操作

Quantify 1 µl of eluted sample using a Qubit fluorometer and Qubit dsDNA BR assay.

Expect ~150 ng/µl for 24 samples, assuming 70% of DNA was retained during the wash.

将11μl含样本的洗脱液转至一支干净的1.5 ml Eppendorf DNA LoBind离心管中。

在一支1.5ml Eppendorf DNA LoBind离心管内,按下表稀释快速测序文库接头(RA),并吹打混匀:

试剂 体积
快速测序文库接头(RA) 1.5 μl
接头缓冲液(ADB) 3.5 μl
总体积 5 μl

向11 μl带条形码的DNA洗脱液中加入1 μl 经过稀释的快速测序文库接头(RA)。

轻弹离心管以充分混合,并瞬时离心。

室温下孵育5分钟。

小提示: 在孵育的同时,您可以继续执行下一节“测序芯片的预处理和上样”中的步骤。

步骤结束

制备好的文库即可用于芯片上样。请在上样前,始终将文库置于冰上。

5. Priming and loading the MinION and GridION Flow Cell

材料
  • 测序芯片冲洗液(FCF)
  • 测序芯片系绳(FCT)
  • 文库颗粒(LIB)
  • 测序缓冲液(SB)

耗材
  • MinION及GridION测序芯片
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • 1.5 ml Eppendorf DNA LoBind 离心管

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • P1000 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
重要

请注意:本试剂盒仅兼容R10.4.1测序芯片(FLO-MIN114)。

提示

测序芯片的预处理及上样

我们建议所有新用户在首次运行测序芯片前,观看视频测序芯片的预处理及上样

于室温下解冻测序缓冲液(SB)、文库颗粒(LIB)或文库溶液(LIS)、测序芯片系绳(FCT)和一管测序芯片冲洗液(FCF)。完全解冻后,涡旋振荡混匀,然后瞬时离心并置于冰上。

重要

为在MinION及GridION R10.4.1测序芯片(FLO-MIN114)上获得最优的测序表现并提高测序产出,我们推荐您向测序芯片预处理液中加入终浓度为0.2 mg/ml的牛血清白蛋白(BSA)。

请注意: 我们不推荐使用其它类型的白蛋白(例如重组人血清白蛋白)。

在一支洁净的 1.5 ml Eppendorf DNA LoBind离心管中,按下表制备测序芯片的预处理液,室温下颠倒离心管并吹打混匀:

试剂 体积(每张芯片)
测序芯片冲洗液 (FCF) 1170 µl
50mg/ml的牛血清白蛋白 (BSA) 5 µl
测序芯片系绳 (FCT) 30 µl
总体积 1205 µl

打开MinION或GridION测序仪的盖子,将测序芯片插入金属固定夹的下方。用力向下按压芯片,以确保正确的热、电接触。

中文-测序芯片预处理上样1a

中文-测序芯片预处理上样1b

可选操作

为文库上样前,完成测序芯片检测,查看可用孔数目。

如此前已对测序芯片进行过质检,则此步骤可省略。

更多信息,请查看MinKNOW实验手册的 测序芯片质检 部分。

顺时针转动预处理孔孔盖,使预处理孔显露出来。

中文-测序芯片预处理上样2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。

中文-测序芯片预处理上样4

将含有文库颗粒的LIB管用移液枪吹打混匀。

重要

LIB管内的文库颗粒分散于悬浮液中。由于颗粒沉降速度非常快,因此请在混匀颗粒后立即使用。

对于大多数测序实验,我们建议您使用文库颗粒(LIB)。但如文库较为粘稠,您可考虑使用文库溶液(LIS)。

在一支新的1.5ml Eppendorf LoBind离心管中,按下表所示准备上样文库:

试剂 体积(每张测序芯片)
测序缓冲液(SB) 37.5 µl
文库颗粒(LIB),使用前即时混匀;或文库溶液(LIS) 25.5 µl
DNA文库 12 µl
总体积 75 µl

完成测序芯片的预处理:

  1. 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。 中文-测序芯片预处理上样5
  2. 通过预处理孔(而 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。 中文-测序芯片预处理上样6

临上样前,用移液枪轻轻吹打混匀制备好的文库。

通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。

中文-测序芯片预处理上样7

轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。

中文-测序芯片预处理上样8

中文-测序芯片预处理上样9

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

步骤结束

小心合上测序设备上盖并在MinKNOW上设置测序实验。

6. Data acquisition and basecalling

重要

Ensure you are using the most recent version of MinKNOW.

We recommend updating MinKNOW to the latest version prior to starting a sequencing run. The basecalling model v4.3 found in Dorado 0.5.0 onwards provides improved accuracy for bacterial DNA and is included in MinKNOW release v24.02 or newer.

For more information on updating MinKNOW, please refer to our MinKNOW protocol.

How to start sequencing

The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer or device. Further instructions for setting up a sequencing run can be found in the MinKNOW protocol.

We recommend setting up a sequencing run on a MinION or GridION device using the basecalling and barcoding recommendations outlined below. All other parameters can be left to their default settings.

Open the MinKNOW software using the desktop shortcut and log into the MinKNOW software using your Community credentials.

Click on your connected device.

min running

Set up a sequencing run by clicking Start sequencing.

Edit 1

Type in the experiment name, select the flow cell postition and enter sample ID. Choose FLO-MIN114 flow cell type from the drop-down menu.

Click Continue to kit selection.

Edit 2

Select the Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) or Rapid Barcoding Kit 96 V14 (SQK-RBK114.96)

Click Continue to Run Options to continue.

Edit 3

Keep the run options to their default settings of 72 hour run length and 200 bp minimum read length.

Click Continue to basecalling to continue.

Edit 4

Set up basecalling and barcoding using the following parameters:

  1. Ensure basecalling is ON.

  2. Next to "Models", click Edit options and choose High accuracy basecaller (HAC) from the drop-down menu.

  3. Ensure barcoding in ON.

Click Continue to output and continue.

Basecalling and Barcoding options 1

Basecalling and Barcoding options 2 NOMISS

Set up the output format and filtering as follows:

  1. Ensure .POD5 is seleceted as the Raw reads output format.

  2. Ensure .FASTQ is selected for basecalled reads.

  3. Ensure filtering is ON.

Click Continue to final review to continue.

output format NOMISS 1

output format NOMISS 2

Click "Start" to start sequencing.

You will be automatically navigated to the "Sequencing Overview" page to monitor the sequencing run.

Edit 8

7. Downstream analysis

Post-basecalling analysis

We recommend performing downstream analysis using EPI2ME which facilitates bioinformatic analyses by allowing users to run Nextflow workflows in a desktop application. EPI2ME maintains a collection of bioinformatic workflows which are curated and actively maintained by experts in long-read sequence analysis.

Further information about the available EPI2ME workflows are available here, along with the Quick Start Guide to start your first bioinformatic workflow.

For the accurate and reliable assembly or alignment of bacterial or fungal isolate genomes generated from the included protocols, we recommend using the wf-bacterial-genomes workflow. At its core, the workflow is an efficient assembly pipeline which also polishes genomes using Medaka.

Whilst running the workflow using the default parameters will produce high quality genome assemblies, using the ‘Isolates’ mode will perform additional analyses designed to increase genome quality and aid genome interrogation for common pathogens in the clinical and food safety fields. ‘Isolates’ analyses includes MLST(7-gene), species confirmation and AMR prediction in addition to sample-specific reports.

Note: You can also run this workflow through command line. However, we only recommend this option for experienced users. For more information, please visit the wf-bacterial-genomes page on GitHub.

Open the EPI2ME app using the desktop shortcut.

On the landing page, open the workflow tab on the left-hand sidebar.

1 landing page EPI2ME

Navigate to the Available workflows tab and click on wf-bacterial-genomes option.

2 (1)

Click install.

3 (1)

Navigate to the Installed tab and click on the installed wf-bacterial-genomes workflow.

4 (1)

可选操作

If the workflow was already installed, check for updates by clicking 'Update workflow'.

Ensure you are using v1.3.0 or newer of the workflow. We recommend running the latest version of our workflows for the best results.

Update workflow no miss

Update workflow no miss II

Click on Run this workflow to open the launch wizard.

Run this workflow no miss

Set up your run by uploading your FASTQ file in the Input Options. We recommend keeping the default settings for the other parameter options.

6 (1)

To enable the isolates mode, tick the isolates checkbox.

7 (1)

Navigate to the 'Nextflow configuration' tab to assign a 'Run name' to your analysis as an identifier.

Workflow run name no miss

Click Launch workflow.

Ensure all parameter options have green ticks.

7 (2)

Once the workflow finishes, a report will be produced.

8. 测序芯片的重复利用及回收

材料
  • 测序芯片清洗剂盒(EXP-WSH004)

完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于2-8℃保存。

您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南

提示

我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。

请按照“回收程序”清洗好芯片,以便送回Oxford Nanopore。

您可在 此处找到回收测序芯片的说明。

请注意: 在将测序芯片寄回之前,请使用去离子水对每张芯片进行冲洗。

重要

如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。

9. Issues during DNA extraction and library preparation

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

Low sample quality

Observation Possible cause Comments and actions
Inefficient lysis Enzyme activity has degraded in the solution or the isolate species is hard to lyse. - Make a fresh enzyme solution.
- Follow the hard to lyse gDNA extraction method.
- Increase the enzyme incubation for longer than 10 minutes.
Low DNA concentration Low input into the extraction method - Check the cell input used
- Add more input and perform the extraction again
- Elute in less Elution Buffer
- Concentrate the DNA with a 0.4X AMPure XP Bead wash.
Low DNA integrity number (DIN) Low quality or concentration of sample input - Repeat the extraction with freshly made enzyme solution
- Concentrate the DNA input with a 0.4X wash
Low sequencing yield Low sample concentration - Concentrate the DNA with a 0.4X AMPure XP wash step to remove potential inhibitors.
- Check the DNA concentration and quality. RNA presence may affect quantification of total DNA.
Low DNA purity (Nanodrop reading for DNA OD 260/280 is <1.8 and OD 260/230 is <2.0–2.2) The DNA extraction method does not provide the required purity The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover.

Consider performing an additional SPRI clean-up step.

经AMPure磁珠纯化后的DNA回收率低

现象 可能原因 措施及备注
低回收率 AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。

2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。
低回收率 DNA片段短于预期 AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 SPRI cleanup
末端修复后的DNA回收率低 清洗步骤所用乙醇的浓度低于70% 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。

10. 在使用快速测序试剂盒测序的过程中,可能产生的问题

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数

现象 可能原因 措施及备注
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 纳米孔阵列中引入了气泡 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 测序芯片没有正确插入测序仪 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 文库中残留的污染物对纳米孔造成损害或堵塞 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。

如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

MinKNOW脚本失败

现象 可能原因 措施及备注
MinKNOW显示 "Script failed”(脚本失败)
重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。

纳米孔利用率低于40%

现象 可能原因 措施及备注
纳米孔利用率<40% 测序芯片中的文库量不足 请确保您按照相应实验指南,向MinION Mk1B/GridION测序芯片中加入正确浓度的优质测序文库。请在上样前对文库进行定量,并使用 Promega Biomath Calculator 等工具中的“ dsDNA:µg to pmol”功能来计算DNA分子的摩尔量。
纳米孔利用率接近0 尽管您使用了快速建库测序试剂盒 V14/快速条形码测序试剂盒V14,但测序接头并未与DNA连接 请务必严格遵照实验指南的操作步骤,并确保使用正确的试剂体积和孵育温度。您可制备Lambda对照文库来检验试剂的质量和有效性。
纳米孔利用率接近0 测序芯片中无系绳 系绳(FCT管)随预处理液加入芯片。因此在制备预处理液时,请确保将FCT加入测序芯片冲洗液(FCF)中。

读长短于预期

现象 可能原因 措施及备注
读长短于预期 DNA样本降解 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。

1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。

2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。DNA gel2 在上图中,样本1为高分子量DNA,而样本2为降解样本。

3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。

大量纳米孔处于不可用状态

现象 可能原因 Comments and actions
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示)

image2022-3-25 10-43-25 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。
样本中含有污染物 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加:

1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或
2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。

大量纳米孔处于失活状态

现象 可能原因 措施及备注
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) 测序芯片中引入了气泡 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。
大量纳米孔处于失活/不可用状态 文库中存在与DNA共纯化的化合物 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。

1. 请参考 植物叶片DNA提取方法
2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。
3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。
大量纳米孔处于失活/不可用状态 样本中含有污染物 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。

温度波动

现象 可能原因 措施及备注
温度波动 测序芯片和仪器接触不良 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。

未能达到目标温度

现象 可能原因 措施及备注
MinKNOW显示“未能达到目标温度” 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION MK1B温度控制的更多信息,请参考此 FAQ (常见问题)文档。

Last updated: 5/14/2024

Document options

MinION