Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114)
- Home
- Documentation
- Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114)
MinION: Protocol
Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) V DCS_9187_v114_revI_31Jul2024
The PCR-free protocol for full-length cDNA offers:
- Higher yields than traditional cDNA synthesis
- Analysis of splice variants & fusion transcripts
- Compatibility with R10.4.1 flow cells
For Research Use Only
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 4. Reverse transcription and strand-switching
- 5. RNA degradation and second strand synthesis
- 6. DNA修复和末端制备 (5)
- 7. Adapter ligation and clean-up
- 8. MinION及GridION 测序芯片的预处理及上样
测序及数据分析 (5)
故障种类及处理方法
概览
The PCR-free protocol for full-length cDNA offers:
- Higher yields than traditional cDNA synthesis
- Analysis of splice variants & fusion transcripts
- Compatibility with R10.4.1 flow cells
For Research Use Only
1. Overview of the protocol
Direct cDNA Sequencing V14 with SQK-LSK114 features
This protocol is recommended for users who:
- Are interested in exploring novel RNA biology.
- Are looking for splice variant and fusion transcript analysis.
- Do not wish to use PCR.
- Wish to preserve quantitative information in samples likely to be impacted by PCR bias.
- Would like full-length cDNA strands.
- Want to achieve median raw read accuracy of Q20+ (99%) and above.
- Want to optimise their sequencing experiment for output.
Introduction to the Direct cDNA sequencing protocol
This protocol describes how to carry out sequencing of cDNA using a reverse transcription and stand-switching method and the Ligation Sequencing Kit V14 (SQK-LSK114).
This protocol requires the use of three oligo primers to be ordered from a third-party (e.g. IDT):
Oligo | Sequence (5' to 3') |
---|---|
VN Primer | /5phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN |
Strand-switching Primer | TTTCTGTTGGTGCTGATATTGCTmGmGmG |
PR2 Primer | /5Phos/TTTCTGTTGGTGCTGATATTGC |
Note: mG = 2' O-Methyl RNA bases. |
- The VN Primer will anchor to the RNA Poly(A)+ tail and prime the first strand synthesis.
- The Strand-switching Primer will anneal to the non-template nucleotides (C’s) of the novel cDNA strand generated from the first strand synthesis, enabling strand switching.
- Following RNA degradation, the PR2 Primer will prime the second strand synthesis of the cDNA sample.
Using this strand-switching method allows for high yields of cDNA library generation from RNA, while also selecting for full-length transcripts.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Order the three oligo primers from a third-party
- Extract your RNA, and check its length, quantity and purity. Alternatively, you can start with already-prepared cDNA. The quality checks performed during the protocol are essential in ensuring experimental success
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data Check your flow cell to ensure it has enough pores for a good sequencing run
Library preparation
You will need to:
- Using the strand-switching protocol, prepare full-length cDNAs from Poly(A)+ RNA
- Ligate sequencing adapters to the cDNA
- Prime the flow cell, and load your cDNA library into the flow cell
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- (Optional): Start the EPI2ME software and select a workflow for further analysis, e.g. Fastq yeast transcriptome analysis
注意
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes.
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes. Pychopper currently miss-classsifies The reads generated with Direct cDNA Sequencing are not being classified correctly in the analysis workflow, leading to ≥80% data loss of full-read transcripts following analysis with wf-transcriptomes.
Note: Experienced users may be able to disable Pychopper during wf-transcriptomes analysis setup to circumvent this issue using the infomation available in the wf-transcriptomes GitHub page and the Pychopper GitHub page. Please note that deviating from the standard analysis settings can result in changes to the analysis output.
重要
Compatibility of this protocol
This protocol should only be used in combination with:
- Ligation Sequencing Kit V14 (SQK-LSK114)
- R10.4.1 flow cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
2. Equipment and consumables
材料
- 100 ng Poly(A)+ RNA OR 1 µg of total RNA
- Ligation Sequencing Kit V14 (SQK-LSK114)
耗材
- User-supplied VN Primer, 2 µM
- User-supplied Strand-Switching Primer, 10 µM
- User-supplied PR2 Primer, 10 µM
- 供Oxford Nanopore Technologies®连接测序使用的NEBNext®配套模块(目录号E7180S或 E7180L),或使用以下三种NEBNext®产品:
- NEBNext® Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- NEBNext 快速连接模块(NEB,E6056)
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml thin-walled PCR tubes
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- 新制备的80%乙醇(用无核酸酶水配制)
- 10 mM dNTP solution (e.g. NEB N0447)
- LongAmp Taq 2X Master Mix (e.g. NEB M0287)
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
- RNase Cocktail Enzyme Mix (ThermoFisher, cat # AM2286)
- (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
仪器
- Hula混匀仪(低速旋转式混匀仪)
- 适用于1.5ml Eppendorf 离心管的磁力架
- 迷你离心机
- 涡旋混匀仪
- 热循环仪
- 盛有冰的冰桶
- 计时器
- Pre-chilled freezer block at -20° C for 200 µl tubes (e.g. Eppendorf cat # 022510509)
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
可选仪器
- Qubit荧光计(或用于质控检测的等效仪器)
For this protocol, you will need 100 ng Poly(A)+ RNA or 1 µg of total RNA.
If using alternative cDNA preparation methods, start the protocol with 70–200 fmol of pre-prepared cDNA at the cDNA repair and end-prep step.
This protocol requires primer oligos to be ordered separately:
Oligo | Sequence (5' to 3') | Purity recommended | Dilution required |
---|---|---|---|
VN Primer | /5phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN | HPLC | 2 µM |
Strand-switching Primer | TTTCTGTTGGTGCTGATATTGCTmGmGmG | HPLC | 10 µM |
PR2 Primer | /5Phos/TTTCTGTTGGTGCTGATATTGC | HPLC | 10 µM |
Note: mG = 2' O-Methyl RNA bases. |
Note: Please ensure your primer oligos are ordered at HPLC purity level for optimal results. If ordering from IDT, the primer oligos will need to be ordered at a minimum scale of 100 nmole to enable HPLC purification.
起始RNA
选择符合质量和浓度要求的起始RNA至关重要的。使用过少或过多的RNA,或者质量较差的RNA(如,高度碎片化、或含有化学污染物的RNA)都会影响文库制备。
有关如何对DNA样品进行质控,请参考起始DNA/RNA质控。
有关使用RNA作为起始材料的更多信息,请参阅以下链接:
您亦可在纳米孔社区的DNA/RNA Handling 页面找到上述文件。
NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing
For customers new to nanopore sequencing, we recommend buying the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7180S or E7180L), which contains all the NEB reagents needed for use with the Ligation Sequencing Kit.
Please note, for this protocol, NEBNext FFPE DNA Repair Mix and NEBNext FFPE DNA Repair Buffer are not required.
第三方试剂
Oxford Nanopore Technologies推荐您使用本实验指南中提及的所有第三方试剂,并已对其加以验证。我们尚未对其它替代试剂进行测试。
我们建议您按制造商说明准备待用的第三方试剂.
重要
为确保高效接头(LA)连接,我们强烈建议您使用连接测序试剂盒V14中提供的连接缓冲液(LNB)而非其它第三方连接酶缓冲液。
连接测序试剂盒V14(SQK-LSK114)内容物
请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装。
单次管装试剂:
部分试剂改为瓶装:
声明: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。
请注意: DNA参照(DCS)是一段可比对到Lambda基因组的3'端、长度为3.6 kb 的标准扩增子。
3. 计算机要求及软件
MinION Mk1C的IT配置要求
MinION Mk1C是一款集计算功能和触控屏幕于一体的便携式测序分析仪,它无需依赖任何额外设备,即可生成并分析纳米孔测序数据。您可以在 MinION Mk1C的IT配置要求文件中了解更多。
MinION Mk1B的IT配置要求
请为MinION Mk1B配备一台高规格的计算机或笔记本电脑,以适配数据采集的速度。您可以在MinION Mk1B的IT配置要求文件中了解更多。
纳米孔测序相关软件
MinKNOW
MinKNOW软件负责控制纳米孔测序仪、实时收集测序数据并进行碱基识别。您将在每次测序实验中使用MinKNOW。MinKNOW还可以通过条形码标记序列,并在测序完成后对数据进行碱基/序列识别及拆分。
有关如何运行MinKNOW软件的说明,请参考 MinKNOW实验指南中的相关部分。
EPI2ME (可选)
EPI2ME云端平台为下机数据提供进一步的分析(如,与Lambda基因组比对、条形码拆分、或分类学鉴定)。EPI2ME 仅 在您需要对下机数据进一步分析时使用。
有关如何创建EPI2ME账户并安装EPI2ME桌面代理(EPI2ME Desktop Agent)的说明,请参考EPI2ME平台使用指南。
测序芯片质检
我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片12周之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :
测序芯片 | 芯片上的活性孔数确保不少于 |
---|---|
Flongle 测序芯片 | 50 |
MinION/GridION 测序芯片 | 800 |
PromethION 测序芯片 | 5000 |
** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。
4. Reverse transcription and strand-switching
材料
- 100 ng Poly(A)+ RNA OR 1 µg of total RNA
耗材
- User-supplied VN Primer, 2 µM
- User-supplied Strand-Switching Primer, 10 µM
- 10 mM dNTP solution (e.g. NEB cat # N0447)
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- 0.2 ml thin-walled PCR tubes
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
仪器
- Pre-chilled freezer block at -20° C for 200 µl tubes (e.g. Eppendorf cat # 022510509)
- 迷你离心机
- 热循环仪
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
重要
If you have already prepared your cDNA, use 70–200 fmol cDNA (~70–200 ng if your sample is 1.5 kb) and start from the cDNA repair and end-prep step.
Thaw the following reagents and spin down briefly using a microfuge, before mixing as indicated in the table below, and place on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
User-supplied VN Primer diluted to 2 µM | ✓ | ✓ | ✓ |
User-supplied Strand-Switching Primer diluted to 10 µM | ✓ | ✓ | ✓ |
10 mM dNTP solution | ✓ | ✓ | ✓ |
RNaseOUT | Not frozen | ✓ | ✓ |
Maxima H Minus Reverse Transcriptase | Not frozen | ✓ | ✓ |
Maxima H Minus 5x RT Buffer | ✓ | ✓ | Mix by vortexing |
Prepare the RNA in nuclease-free water
- Transfer 100 ng Poly(A)+ RNA or 1 μg of total RNA into a 0.2 ml PCR tube
- Adjust the volume to up to 7.5 μl with nuclease-free water
- Mix by flicking the tube to avoid unwanted shearing
- Spin down briefly in a microfuge
Prepare the following reaction in the 0.2 ml PCR tube containing the prepared RNA input:
Reagent | Volume |
---|---|
RNA input (100 ng Poly(A)+ RNA or 1 μg of total RNA) from step above | 7.5 μl |
VN Primer diluted to 2 μM | 2.5 μl |
10 mM dNTPs | 1 μl |
Total volume | 11 μl |
轻弹离心管以充分混合,并瞬时离心。
Incubate at 65°C for 5 minutes and then snap cool on a pre-chilled freezer block for 1 minute.
In a separate tube, mix together the following:
Reagent | Volume |
---|---|
5x RT Buffer | 4 μl |
RNaseOUT | 1 μl |
Nuclease-free water | 1 μl |
Strand-Switching Primer diluted to 10 µM | 2 μl |
Total | 8 μl |
轻弹离心管以充分混合,并瞬时离心。
Add the 8 μl of strand-switching reagents (prepared in steps 6-7) to the 11 μl of snap-cooled mRNA (from steps 2-5). Mix by flicking the tube and spin down.
Incubate at 42°C for 2 minutes in the thermal cycler.
Add 1 µl of Maxima H Minus Reverse Transcriptase. The total volume is now 20 µl.
轻弹离心管以充分混合,并瞬时离心。
Incubate using the following protocol using a thermal cycler:
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Reverse transcription and strand-switching | 42°C | 90 mins | 1 |
Heat inactivation | 85°C | 5 mins | 1 |
Hold | 4°C | ∞ |
5. RNA degradation and second strand synthesis
材料
- AMPure XP 磁珠(AXP)
耗材
- User-supplied PR2 Primer, 10 µM
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- LongAmp Taq 2X Master Mix (e.g. NEB cat # M0287)
- RNase Cocktail Enzyme Mix (ThermoFisher, cat # AM2286)
- 新制备的80%乙醇(用无核酸酶水配制)
- 1.5 ml Eppendorf DNA LoBind 离心管
仪器
- 热循环仪
- 涡旋混匀仪
- Hula混匀仪(低速旋转式混匀仪)
- 适用于1.5ml Eppendorf 离心管的磁力架
- 盛有冰的冰桶
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
可选仪器
- DNA QC equipment, e.g. Qubit fluorometer, NanoDrop spectrophotometer, Agilent Bioanalyzer or Tapestation, Agilent FEMTO Pulse
Thaw the following reagents and spin down briefly using a microfuge, before mixing as indicated in the table below, and place on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
User-supplied PR2 Primer diluted to 10 µM | ✓ | ✓ | ✓ |
RNase Cocktail Enzyme Mix | Not frozen | ✓ | ✓ |
LongAmp Taq 2X Master Mix | ✓ | ✓ | ✓ |
Thaw the AMPure XP Beads (AXP) at room temperature and mix by vortexing. Keep the beads at room temperature.
Add 1 µl RNase Cocktail Enzyme Mix (ThermoFisher, cat # AM2286) to the reverse transcription reaction.
Incubate the reaction for 10 minutes at 37° C in a thermal cycler.
Resuspend the AMPure XP beads (AXP) by vortexing.
将样品转至干净的1.5 ml Eppendorf DNA LoBind 离心管中。
Add 17 µl of resuspended AMPure XP beads (AXP) to the reaction and mix by flicking the tube.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
准备500μl新制备的80%乙醇(用无核酸酶水配制)。
Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend pellet in 20 µl nuclease-free water.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Briefly spin down the tube and pellet the beads on the magnet until the eluate is clear and colourless, for at least 1 minute.
Remove and retain 20 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
Prepare the following reaction in a 0.2 ml thin-walled PCR tube:
Reagent | Volume |
---|---|
2x LongAmp Taq Master Mix | 25 μl |
PR2 Primer diluted to 10 μM | 2 μl |
Reverse-transcribed sample from above | 20 μl |
Nuclease-free water | 3 μl |
Total | 50 μl |
Incubate using the following protocol:
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Denaturation | 94 °C | 1 mins | 1 |
Annealing | 50 °C | 1 mins | 1 |
Extension | 65 °C | 15 mins | 1 |
Hold | 4 °C | ∞ |
Resuspend the AMPure XP beads (AXP) by vortexing.
将样品转至干净的1.5 ml Eppendorf DNA LoBind 离心管中。
Add 40 µl of resuspended AMPure XP beads (AXP) to the reaction and mix by flicking the tube.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
Prepare 500 μl of fresh 80% ethanol in nuclease-free water.
Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend pellet in 21 µl nuclease-free water.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Briefly spin down the tube and pellet the beads on the magnet until the eluate is clear and colourless, for at least 1 minute.
Remove and retain 21 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Analyse 1 µl of the strand-switched DNA for size, quantity and quality using an Agilent Bioanalyzer and Qubit fluorometer (or equivalent).
步骤结束
Take forward the full volume of your sample into the cDNA repair and end-prep stage of the protocol.
Recovery aim for the samples after RNA degradation and second strand synthesis is 70–200 fmol (~70–200 ng if your sample is 1.5 kb).
6. DNA修复和末端制备 (5)
材料
- Strand-switched cDNA in 20 µl
- AMPure XP 磁珠(AXP)
耗材
- 0.2 ml薄壁PCR管
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
- NEBNext® Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- 新制备的80%乙醇(用无核酸酶水配制)
- Qubit™ 分析管(Invitrogen, Q32856)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
仪器
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P10 移液枪和枪头
- 热循环仪
- 迷你离心机
- Hula混匀仪(低速旋转式混匀仪)
- 磁力架
- 盛有冰的冰桶
可选仪器
- Qubit荧光计(或用于质控检测的等效仪器)
重要
If you have prepared your own cDNA instead of performing reverse transcription using the method outlined in this protocol, start this step with 70–200 fmol cDNA (~70–200 ng if your sample is 1.5 kb) in 20 µl nuclease-free water.
Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:
For optimal performance, NEB recommend the following:
Thaw all reagents on ice.
Ensure the reagents are well mixed.
Note: Do not vortex the Ultra II End Prep Enzyme Mix.Always spin down tubes before opening for the first time each day.
The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.
Combine the following reagents in a 0.2 ml PCR tube:
Reagent | Volume |
---|---|
cDNA sample | 20 µl |
Nuclease-free water | 30 µl |
Ultra II End-prep reaction buffer | 7 µl |
Ultra II End-prep enzyme mix | 3 µl |
Total | 60 µl |
轻轻吹打以充分混匀,并瞬时离心。
使用热循环仪,在20℃下孵育5分钟,然后在65℃下孵育5分钟。
涡旋振荡以重悬AMPure XP磁珠(AXP)。
将DNA样本转至干净的1.5 ml Eppendorf DNA LoBind离心管中。
将60µl重悬的AMPure XP磁珠(AXP)加入DNA末端修复反应体系中,轻弹试管以充分混合。
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。
准备500μl新制备的80%乙醇(用无核酸酶水配制)。
将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。
保持离心管在磁力架上不动,以200µl新鲜制备的80%乙醇洗涤磁珠。小心不要吹散磁珠。用移液枪将乙醇吸走并弃掉。
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend pellet in 61 µl nuclease-free water. Incubate for 2 minutes at room temperature.
将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。
Remove and retain 61 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
取1µl洗脱样品,用Qubit荧光计定量。
步骤结束
Take forward the 60 µl of repaired and end-prepped cDNA into the adapter ligation step. However, at this point it is also possible to store the sample at 4°C overnight.
7. Adapter ligation and clean-up
材料
- 连接接头(LA)
- Ligation Buffer (LNB)
- 短片段缓冲液(SFB)
- AMPure XP 磁珠(AXP)
- Elution Buffer (EB)
耗材
- NEBNext®快速连接模块(NEB,E6056)
- 1.5 ml Eppendorf DNA LoBind 离心管
- Qubit™ 分析管(Invitrogen, Q32856)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
仪器
- 磁力架
- 迷你离心机
- 涡旋混匀仪
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- Qubit荧光计(或用于质控检测的等效仪器)
重要
尽管第三方连接酶产品可能也附带缓冲液,但使用连接测序试剂盒中提供的连接缓冲液(LNB)时,连接接头(LA)的连接效率会更高。
重要
本试剂盒所用连接接头(LA)经过升级,不可与其它测序接头互换使用。
瞬时离心连接接头(LA)和快速T4 DNA连接酶,置于冰上。
于室温下解冻连接缓冲液(LNB),解冻后瞬时离心,并用移液枪吹打混匀。该缓冲液的黏度较高,涡旋振荡会很难混匀。解冻并混匀后,请立即置于冰上。
将洗脱缓冲液(EB)于室温下解冻,涡旋振荡混匀后,再瞬时离心,置于冰上。
Thaw the Short Fragment Buffer (SFB) at room temperature and mix by vortexing. Then spin down and place on ice.
In a 1.5 ml Eppendorf DNA LoBind tube, mix in the following order:
Between each addition, pipette mix 10-20 times.
Reagent | Volume |
---|---|
cDNA sample from the previous step | 60 µl |
Ligation Adapter (LA) | 5 µl |
Ligation Buffer (LNB) | 25 µl |
NEBNext Quick T4 DNA Ligase | 10 µl |
Total | 100 µl |
轻轻吹打以充分混匀,并瞬时离心。
室温下孵育10分钟。
涡旋振荡以重悬AMPure XP磁珠(AXP)。
将40µl 重悬的AMPure XP磁珠加入反应体系中,轻弹离心管以充分混合。
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。
将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去上清液。
Wash the beads by adding 250 μl of Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
Note: Take care when removing the supernatant, the viscosity of the buffer can contribute to loss of beads from the pellet.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的上清液。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Spin down and incubate for 10 minutes at room temperature.
将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。
将此15µl洗脱液转移至一支新的1.5ml Eppendorf DNA LoBind管中。
丢弃磁珠
CHECKPOINT
取1µl洗脱样品,用Qubit荧光计定量。
Depending on your DNA library fragment size, prepare your final library in 12 µl of Elution Buffer (EB).
Fragment library length | Flow cell loading amount |
---|---|
Very short (<1 kb) | 100 fmol |
Short (1-10 kb) | 35–50 fmol |
Long (>10 kb) | 300 ng |
Note: If the library yields are below the input recommendations, load the entire library.
If required, we recommend using a mass to mol calculator such as the NEB calculator.
重要
We recommend loading 35-50 fmol of this final prepared library onto the R10.4.1 flow cell.
This is to ensure high pore occupancy of >95% is reached. How to calculate pore occupancy can be found here.
步骤结束
构建好的文库即可用于测序芯片上样。在上样前,请将文库置于冰上或4℃条件下保存。
提示
文库保存建议
若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。
可选操作
如DNA文库量足够,您可选择使用洗脱缓冲液(EB)稀释文库,再拆分上样至多张测序芯片。
根据测序芯片的数目,洗脱缓冲液的实际需求量可能会高于本试剂盒中该缓冲液的供应量。
8. MinION及GridION 测序芯片的预处理及上样
材料
- 测序芯片冲洗液(FCF)
- 测序芯片系绳(FCT)
- 文库溶液(LIS)
- 文库颗粒(LIB)
- 测序缓冲液(SB)
耗材
- MinION及GridION测序芯片
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
- (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
仪器
- MinION 或 GridION 测序仪
- MinION 及GridION 测序芯片遮光片
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
重要
请注意:本试剂盒仅兼容R10.4.1测序芯片(FLO-MIN114)。
于室温下解冻测序缓冲液(SB)、文库颗粒(LIB)或文库溶液(LIS)、测序芯片系绳(FCT)和一管测序芯片冲洗液(FCF)。完全解冻后,涡旋振荡混匀,然后瞬时离心并置于冰上。
重要
为在MinION及GridION R10.4.1测序芯片(FLO-MIN114)上获得最优的测序表现并提高测序产出,我们推荐您向测序芯片预处理液中加入终浓度为0.2 mg/ml的牛血清白蛋白(BSA)。
请注意: 我们不推荐使用其它类型的白蛋白(例如重组人血清白蛋白)。
按下表制备测序芯片的预处理液,室温下吹打混匀。
请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装。请按照与您所用试剂盒包装相对应的说明操作。
单次使用管装: 向一整管测序芯片冲洗液(FCF)中加入5µl 50mg/ml的牛血清白蛋白(BSA)及 30µl 测序芯片系绳(FCT)。
瓶装: 请另拿一支适当体积的离心管制备测序芯片预处理液:
试剂 | 体积(每张芯片) |
---|---|
测序芯片冲洗液 (FCF) | 1,170 µl |
50mg/ml的牛血清白蛋白 (BSA) | 5 µl |
测序芯片系绳 (FCT) | 30 µl |
总体积 | 1,205 µl |
打开MinION或GridION测序仪的盖子,将测序芯片插入金属固定夹的下方。用力向下按压芯片,以确保正确的热、电接触。
顺时针转动预处理孔孔盖,使预处理孔显露出来。
重要
从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。
将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:
- 将P1000移液枪转至200µl刻度。
- 将枪头垂直插入预处理孔中。
- 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
__请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。
通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。
将含有文库颗粒的LIB管用移液枪吹打混匀。
重要
LIB管内的文库颗粒分散于悬浮液中。由于颗粒沉降速度非常快,因此请在混匀颗粒后立即使用。
对于大多数测序实验,我们建议使用文库颗粒(LIB)。然而,对于粘度较高的文库,可以考虑使用文库溶液(LIS)。
在一支新的1.5ml Eppendorf LoBind离心管中,按下表所示准备上样文库:
试剂 | 体积(每张测序芯片) |
---|---|
测序缓冲液(SB) | 37.5 µl |
文库颗粒(LIB),使用前即时混匀;或文库溶液(LIS) | 25.5 µl |
DNA文库 | 12 µl |
总体积 | 75 µl |
完成测序芯片的预处理:
- 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。
- 通过预处理孔(而 非 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。
临上样前,用移液枪轻轻吹打混匀制备好的文库。
通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。
轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。
重要
为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。
我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。
按下述步骤安装测序芯片遮光片:
小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。
将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。
注意
MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。
步骤结束
小心合上测序设备上盖并在MinKNOW上设置测序实验。
9. Data acquisition and basecalling
纳米孔数据分析概览
有关纳米孔数据分析的完整概述,包括碱基识别和次级分析,请参阅 数据分析 文档。
如何开始测序
MinKNOW软件负责仪器控制,数据采集和实时碱基识别。如您已在计算机上安装MinKNOW,则可选择以下几种途径开展测序:
1. 使用计算机上的MinKNOW进行实时数据采集和碱基识别
请按照 MinKNOW 实验指南 的说明:从“开始测序”部分起,到“MinKNOW运行结束”部分止。
2. 使用GridION进行实时数据采集和碱基识别
请参照 GridION 用户手册 中的说明。
3. 使用MinION Mk1C测序仪进行实时数据采集和碱基识别
请参照 MinION Mk1C 使用指南中的说明。
4. 使用PromethION测序仪进行实时数据采集和碱基识别
请参照 PromethION 使用指南 或 PromethION 2 Solo 使用指南中的说明。
5. 使用计算机上的MinKNOW进行数据采集,过后再用NinKNOW进行线下碱基识别
请按照 MinKNOW 实验指南 中的说明:从“开始测序”部分起,到“MinKNOW运行结束”部分止。 当您设置实验参数时,请将 碱基识别 选项设为“关”。 测序实验结束后,请按照 MinKNOW 实验指南的本地分析 部分操作。
10. 下游分析 (1)
注意
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes.
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes. Pychopper currently miss-classsifies The reads generated with Direct cDNA Sequencing are not being classified correctly in the analysis workflow, leading to ≥80% data loss of full-read transcripts following analysis with wf-transcriptomes.
Note: Experienced users may be able to disable Pychopper during wf-transcriptomes analysis setup to circumvent this issue using the infomation available in the wf-transcriptomes GitHub page and the Pychopper GitHub page. Please note that deviating from the standard analysis settings can result in changes to the analysis output.
下游分析
您可以选择以下几个途径来进一步分析经过碱基识别的数据:
1. EPI2ME 工作流程
Oxford Nanopore Technologies通过EPI2ME Labs平台提供了一系列针对高阶数据分析的生物信息学教程和工作流程。上述资源汇总于纳米孔社区的 EPI2ME Labs 板块。该平台通过描述性文字、生物信息学代码和示例数据,具象化地展示出我们的研究和应用团队发布在 GitHub 上的工作流程。
2. 科研分析工具
Oxford Nanopore Technologies的研发部门开发了许多分析工具,您可在Oxford Nanopore的 GitHub 资料库中找到。这些工具面向有一定经验的用户,并包含如何安装和运行软件的说明。工具以源代码形式提供,因此我们仅提供有限的技术支持。
3. 纳米孔社区用户开发的分析工具
如果以上工具仍无法为您提供解决研究问题的分析方法,请参考资源中心的生物信息学板块。该板块汇总了许多由纳米孔社区成员开发、且在Github上开源的、针对纳米孔数据的生信分析工具。请注意,Oxford Nanopore Technologies不为这些工具提供支持,也不能保证它们与测序所用的最新的化学试剂/软件配置兼容。
11. 测序芯片的重复利用及回收
材料
- 测序芯片清洗剂盒(EXP-WSH004)
完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于2-8℃保存。
您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南。
提示
我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。
请按照“回收程序”清洗好芯片,以便送回Oxford Nanopore。
您可在 此处找到回收测序芯片的说明。
请注意: 在将测序芯片寄回之前,请使用去离子水对每张芯片进行冲洗。
重要
如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。
12. DNA/RNA提取和文库制备过程中可能出现的问题
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
低质量样本
现象 | 可能原因 | 措施及备注 |
---|---|---|
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) | 用户所使用的DNA提取方法未能达到所需纯度 | 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法。 请考虑将样品再次用磁珠纯化。 |
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。 |
RNA的片段长度短于预期 | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。 我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染. |
经AMPure磁珠纯化后的DNA回收率低
现象 | 可能原因 | 措施及备注 |
---|---|---|
低回收率 | AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 | 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。 2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。 |
低回收率 | DNA片段短于预期 | AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 |
末端修复后的DNA回收率低 | 清洗步骤所用乙醇的浓度低于70% | 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。 |
13. Issues during the sequencing run
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 纳米孔阵列中引入了气泡 | 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。 |
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 测序芯片没有正确插入测序仪 | 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。 |
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 文库中残留的污染物对纳米孔造成损害或堵塞 | 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。 如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法 。 |
MinKNOW脚本失败
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示 "Script failed”(脚本失败) | 重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
读长短于预期
现象 | 可能原因 | 措施及备注 |
---|---|---|
读长短于预期 | DNA样本降解 | 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。 1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。 2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。 在上图中,样本1为高分子量DNA,而样本2为降解样本。 3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。 |
大量纳米孔处于不可用状态
现象 | 可能原因 | Comments and actions |
---|---|---|
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示) 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。 | 样本中含有污染物 | 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加: 1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或 2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。 |
大量纳米孔处于失活状态
现象 | 可能原因 | 措施及备注 |
---|---|---|
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) | 测序芯片中引入了气泡 | 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。 |
大量纳米孔处于失活/不可用状态 | 文库中存在与DNA共纯化的化合物 | 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。 1. 请参考 植物叶片DNA提取方法。 2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。 3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。 |
大量纳米孔处于失活/不可用状态 | 样本中含有污染物 | 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。 |
运行过程中过孔速度和数据质量(Q值)降低
现象 | 可能原因 | 措施及备注 |
---|---|---|
运行过程中过孔速度和数据质量(Q值)降低 | 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 | 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。 |
温度波动
现象 | 可能原因 | 措施及备注 |
---|---|---|
温度波动 | 测序芯片和仪器接触不良 | 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。 |
未能达到目标温度
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示“未能达到目标温度” | 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) | MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION MK1B温度控制的更多信息,请参考此 FAQ (常见问题)文档。 |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |