cDNA-PCR Sequencing V14 (SQK-PCS114)

Descripción general

The fastest and simplest protocol for full-length cDNA sequencing

  • Offering highest yield
  • Higher yields than traditional cDNA synthesis
  • Splice variants and fusion transcripts
  • Compatible with R10.4.1 flow cells

For Research Use Only

This is an Early Access product For more information about our Early Access programmes, please see this article on product release phases.

Document version: PCS_9200_v114_revC_06Dec2023

1. Overview of the protocol

IMPORTANTE

Este es un producto de acceso anticipado

Para tener más información sobre los programas de acceso anticipado, consulte este artículo sobre las fases de lanzamiento de productos.

Procure usar siempre la versión más reciente del protocolo.

Introduction to the cDNA-PCR protocol

This protocol describes how to carry out sequencing of cDNA using a strand-switching method and the cDNA-PCR Sequencing Kit V14 (SQK-PCS114). During the strand-switching step, a UMI is incorporated, before the double-stranded cDNA is amplified by PCR using primers containing 5' tags. The Rapid Sequencing Adapters are then added to the amplified sample.

A control experiment can be completed first using RNA Control Sample (RCS) from the RNA Control Expansion (EXP-RCS001) as your input to troubleshoot your library preparation or to become familiar with the protocol.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Extract your RNA, and check its length, quantity and purity using the Input DNA/RNA QC protocol. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

The table below is an overview of the steps required in the library preparation, including timings and stopping points.

Library preparation step Process Time Stop option
Reverse transcription and strand-switching Prepare full-length cDNA from Poly(A)+ RNA (or total RNA) 170 minutes -20°C overnight
Selecting for full-length transcripts by PCR Amplify the cDNA by PCR using rapid attachment primers during the PCR step 40 minutes 4°C short-term storage or for repeated use, such as re-loading your flow cell.
-80°C for single-use long-term storage.
Adapter ligation Attach the sequencing adapters to the to the PCR products. 5 minutes We strongly recommend sequencing your library as soon as it is adapted.
Priming and loading the flow cell Prime the flow cell and load the prepared cDNA library for sequencing 5 minutes

PCS114 workflow

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Optional: Start the EPI2ME software and select a workflow for further analysis, e.g. metagenomic analysis or drug resistance mapping
IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

2. Equipment and consumables

Material
  • 10 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 500 ng total RNA
  • cDNA-PCR Sequencing Kit V14 (SQK-PCS114)

Consumibles
  • Celda de flujo PromethION
  • NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
  • T4 DNA Ligase 2M U/ml (NEB, M0202M)
  • RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
  • Lambda Exonuclease (NEB, Cat # M0262L)
  • Thermolabile Exonuclease I (NEB, cat # M0568)
  • USER (Uracil-Specific Excision Reagent) Enzyme (NEB, cat # M5505L)
  • 10 mM dNTP solution (e.g. NEB N0447)
  • Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Microesferas Agencourt RNAClean XP (Beckman Coulter™, A63987)
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • Qubit RNA HS Assay Kit (ThermoFisher, Q32852)
  • Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Freshly prepared 70% ethanol in nuclease-free water
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • 0.2 ml thin-walled PCR tubes

Instrumental
  • PromethION device
  • PromethION Flow Cell Light Shield
  • Mezclador Hula (mezclador giratorio suave)
  • Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
  • Microcentrífuga
  • Mezclador vórtex
  • Termociclador
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Agilent Bioanalyzer (or equivalent)
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Cubeta con hielo
  • Temporizador

For this protocol, you will need 10 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 500 ng total RNA.

Reactivos de otros fabricantes

Oxford Nanopore Technologies ha probado y recomienda el uso de todos los reactivos de otros fabricantes citados en este protocolo. No se han evaluado otras alternativas.

Recomendamos preparar estos reactivos siguiendo las instrucciones del fabricante.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000

cDNA-PCR Sequencing Kit V14 (SQK-PCS114) contents

SQK PCS114 Kit content

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Strand Switching Primer II SSPII Violet 1 20
RT Primer RTP Yellow 1 10
cDNA RT Adapter CRTA Amber 1 10
Annealing Buffer AB Orange 1 10
Rapid Adapter RA Green 1 15
Adapter Buffer ADB Clear 1 100
cDNA Primer cPRM White cap, grey label 1 40
Elution Buffer EB Black 1 500
Short Fragment Buffer SFB Clear 1 1,800
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Flow Cell Tether FCT Purple 1 200
Flow Cell Flush FCF Clear cap, light blue label 1 8,000

3. Reverse transcription and strand-switching

Material
  • 10 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 500 ng total RNA
  • cDNA RT Adapter (CRTA)
  • Annealing Buffer (AB)
  • Short Fragment Buffer (SFB)
  • RT Primer (RTP)
  • Strand Switching Primer II (SSPII)

Consumibles
  • Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
  • NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
  • T4 DNA Ligase 2M U/ml (NEB, M0202M)
  • Lambda Exonuclease (NEB, Cat # M0262L)
  • USER (Uracil-Specific Excision Reagent) Enzyme (NEB, cat # M5505L)
  • Microesferas Agencourt RNAClean XP (Beckman Coulter™, A63987)
  • 10 mM dNTP solution (e.g. NEB cat # N0447)
  • Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
  • RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes
  • Qubit RNA HS Assay Kit (ThermoFisher, Q32852)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)

Instrumental
  • Microcentrífuga
  • Termociclador
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Fluorímetro Qubit (o equivalente para el control de calidad)
CHECKPOINT

Verificar la celda de flujo

Antes de empezar a preparar la biblioteca, recomendamos se verifique la celda de flujo para comprobar que tiene poros suficientes para realizar un buen experimento.

Las instrucciones de comprobación de la celda de flujo están disponibles en el protocolo de MinKNOW.

CONSEJO

Preparing the laboratory for handling RNA samples:

For optimal results, we recommend preparing your laboratory space and equipment prior to handling RNA to ensure the presence of RNAse and contaminants is minimal:

  • Clean the lab bench space where you will carry out the work with RNaZap and tech wipes.
  • Clean all equipment such as pippettes, tube racks, centrifuge and vortex with RNaZap and tech wipes.
  • Use fresh tip boxes and reagents to minimise risk of contamination.

Thaw the following reagents, then spin down briefly using a microfuge and mix as indicated in the table below. Then place the reagents on ice.

Reagent 1. Thaw at room temperature 2. Briefly spin down 3. Mix well by pipetting
cDNA RT Adapter (CRTA)
Annealing Buffer (AB)
Short Fragment Buffer (SFB)
RT Primer (RTP)
Strand Switching Primer II (SSPII)
NEBNext® Quick Ligation Reaction Buffer Mix by vortexing
T4 DNA Ligase 2M U/ml Not frozen
RNaseOUT Not frozen
Lambda Exonuclease Not frozen
Uracil-Specific Excision Reagent (USER) Not frozen
10 mM dNTP solution
Maxima H Minus Reverse Transcriptase Not frozen
Maxima H Minus 5x RT Buffer Mix by vortexing
IMPORTANTE

It is important that the NEBNext Quick Ligation Reaction Buffer is mixed well by vortexing.

Check for any visible precipitate; vortexing for at least 30 seconds may be required to solubilise all precipitate.

MEDIDA OPCIONAL

To run a control experiment, replace your sample input with 10 μl diluted RNA Control Sample (RCS) from the RNA Control Expansion (EXP-RCS001) as follows:


  • Thaw the RNA Control Sample (RCS) at room temperature, briefly spin down and mix well by pipetting.
  • Dilute the RNA Control Sample (RCS) in a 1.5 ml Eppendorf DNA LoBind tube as follows:

Reagent Volume
RNA Control Sample (RCS) 1 μl
Nuclease-free water 14 μl
Total 15 μl

Note: This will provide enough volume for 1 sample, adjust your volumes accordingly for the number of samples you wish to run in your control experiment.

  • Mix thoroughly by pipetting 10-20 times and briefly spin down.
  • Use the 10 μl of diluted RNA Control Sample (RCS) as your RNA input.

Prepare the RNA sample(s) in nuclease-free water:

  • Transfer 10 ng Poly(A)+ RNA, or 500 ng total RNA into a 0.2 ml thin-walled PCR tube
  • Adjust the volume up to 10 µl with nuclease-free water
  • Mix by flicking the tube to avoid unwanted shearing
  • Spin down briefly in a microfuge

Prepare the following reaction in a 0.2 ml PCR tube:

Reagent Volume
RNA 10 μl
cDNA RT Adapter (CRTA) 1 μl
Annealing Buffer (AB) 1 μl
Total volume 12 μl
CONSEJO

The cDNA RT Adapter (CRTA) is a double stranded adapter with a poly(T) overhang which anneals to the very end of the poly(A) tail of the RNA strand. This ensures that the full length of the RNA is reverse transcribed and that the poly(A) length can be estimated accurately. Annealing Buffer (AB) has been included to improve CRTA ligation.

Ensure the components are thoroughly mixed by flicking the tube and spin down.

Incubate the reactions in the thermal cycler at 60°C for 5 mins, then cool for 5 minutes at room temperature.

To the same 0.2 ml PCR tube, add the following:

Reagent Volume
RNA sample (from previous step) 12 μl
NEBNext® Quick Ligation Reaction Buffer 3.6 μl
T4 DNA Ligase 2M U/ml 1.4 μl
RNaseOUT 1 μl
Total volume (including all reagents) 18 μl

Ensure the components are thoroughly mixed by flicking the tube and spin down.

Incubate for 10 minutes at room temperature.

To each of the 0.2 ml PCR tubes, add the following:

Reagent Volume
RNA sample (from previous step) 18 µl
Lambda Exonuclease 1 µl
USER (Uracil-Specific Excision Reagent) 1 µl
Total volume (including all reagents) 20 µl
CONSEJO

The Lambda Exonuclease and Uracil-Specific Excision Reagent (USER) are third-party reagents used in the preparation of the reverse transcription step. Lambda Exonuclease and USER digest the bottom strand of the ligated CRTA so that the RT Primer (RTP) can bind the CRTA sequence as a primer for the reverse transcription of the RNA.

Ensure the components are thoroughly mixed by flicking the tube and spin down.

Incubate for 5 minutes at 37°C in the thermal cycler.

Transferir la muestra a un tubo nuevo de 1,5 ml Eppendorf DNA Lobind.

Resuspend the RNase-free XP beads by vortexing.

Add 36 µl of resuspended RNase-free XP beads to the reaction and mix gently by flicking the tube.

Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.

Centrifugar la muestra y precipitar en un imán. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.

Keep the tubes on the magnet and wash the beads with 100 µl of Short Fragment Buffer (SFB) as follows:

  1. Wash the beads with 100 µl of Short Fragment Buffer (SFB).
  2. Keeping the magnetic rack on the benchtop, rotate the tube by 180°. Wait for the beads to migrate towards the magnet and to form a pellet.
  3. Rotate the tube 180° again (back to the starting position), and wait for the beads to pellet again.
  4. Without disturbing the pellet, remove the Short Fragment Buffer (SFB) using a pipette and discard.

Repeat the previous step.

Spin down and place the tube back on the magnet. Pipette off any residual buffer. Briefly allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.

Remove the tube from the magnetic rack and resuspend pellet in 12 µl of nuclease-free water.

Incubate at room temperature for 10 minutes.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove and retain 12 µl of eluate into a clean 0.2 ml thin-walled PCR tube.

To the same 0.2 ml PCR tube, add the following:

Reagent Volume
Eluted sample (from previous step) 12 μl
RT Primer (RTP) 1 μl
dNTPs (10 mM) 1 μl
Total volume (including all reagents) 14 μl
CONSEJO

RT Primer (RTP) is a single stranded primer and binds upstream of the poly(A) tail of the RNA transcript to prime for reverse transcription.

Ensure the components are thoroughly mixed by flicking the tube and spin down.

Incubar la reacción durante 5 minutos a temperatura ambiente.

To the same 0.2 ml PCR tube, add the following:

Reagent Volume
RT primed RNA (from previous step) 14 μl
Maxima H Minus 5x RT Buffer 4.5 μl
RNaseOUT 1 μl
Strand Switching Primer II (SSPII) 2 μl
Total (including all reagents) 21.5 μl
CONSEJO

Strand Switching Primer II (SSPII) base pairs to the deoxycytidine present at the 5' end of the first cDNA strand synthesised. This allows the reverse transcriptase to "strand-switch" for synthesis of the second cDNA strand.

Ensure the components are thoroughly mixed by flicking the tube and spin down.

Incubate at 42°C for 2 minutes in the thermal cycler.

Add 1 µl of Maxima H Minus Reverse Transcriptase. The total volume is now 22.5 µl.

Ensure the components are thoroughly mixed by flicking the tube and spin down.

Incubate using the following protocol using a thermal cycler:

Cycle step Temperature Time No. of cycles
Reverse transcription and strand-switching 42°C 30 mins 1
Heat inactivation 85°C 5 mins 1
Hold 4°C
FIN DEL PROCESO

Take your samples forward into the next step. However, at this point it is also possible to store the sample at -20°C overnight.

4. Selecting for full-length transcripts by PCR

Material
  • cDNA Primer (cPRM)
  • Elution Buffer (EB)

Consumibles
  • Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Thermolabile Exonuclease I (NEB, cat # M0568)
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Freshly prepared 70% ethanol in nuclease-free water
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)

Instrumental
  • Termociclador
  • Mezclador vórtex
  • Mezclador Hula (mezclador giratorio suave)
  • Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
  • Cubeta con hielo
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Agilent Bioanalyzer (or equivalent)
IMPORTANTE

The 22.5 μl of reverse-transcribed sample is used to make 4x 50 μl PCR reactions which will be pooled at a later stage, with 5 μl of reverse-transcribed sample in each PCR reaction. Do NOT use all 22.5 μl of the reverse transcription reaction in a single PCR reaction.

Reverse transcriptase is a PCR inhibitor and the RT material must be diluted enough for PCR to take place.

Thaw the cDNA Primer (cPRM), Elution Buffer (EB). LongAmp Hot Start Taq 2X Master Mix and Thermolabile Exonuclease I at room temperature, spin down and pipette mix. Store the reagents on ice.

Spin down the reverse-transcribed RNA sample.

Prepare four fresh 0.2 ml PCR tubes and add 5 μl of reverse-transcribed sample per tube.

In each of the 0.2 ml PCR tubes containing the reverse-transcribed sample, prepare the following reaction at room temperature:

Reagent Volume
Reverse-transcribed sample (from previous step) 5 μl
cDNA Primer (cPRM) 1.5 μl
Nuclease-free water 18.5 μl
2x LongAmp Hot Start Taq Master Mix 25 μl
Total (including all reagents) 50 μl

Mix gently by pipetting.

Amplify using the following cycling conditions.

Cycle step Temperature Time No. of cycles
Initial denaturation 95°C 30 secs 1
Denaturation 95°C 15 secs 10-18*
Annealing 62°C 15 secs 10-18*
Extension 65°C 60 secs per kb 10-18*
Final extension 65°C 6 mins 1
Hold 4°C

*We recommend 14 cycles as a starting point. However, the number of cycles can be adjusted between the values shown according to experimental needs.

For further information, please read The effect of varying the number of PCR cycles in the PCR-cDNA Sequencing Kit document.

Add 1 μl Thermolabile Exonuclease I directly to each PCR tube. Mix by flicking the tube and briefly spin down.

CONSEJO

The Thermolabile Exonuclease I is added to remove any excess primers which have not successfully annealed.

Incubate the reaction at 37°C for 5 minutes, followed by 80°C for 2 minutes in the thermal cycler.

Pool the four PCR reactions (total 204 μl) in a clean 1.5 ml Eppendorf DNA LoBind tube.

Resuspend the AMPure XP beads by vortexing.

Add 140 µl of resuspended AMPure XP beads to the reaction.

Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.

Prepare 1 ml of fresh 70% ethanol in nuclease-free water.

Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 500 µl of freshly-prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repetir el paso anterior.

Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.

Remove the tube from the magnetic rack and resuspend pellet in 12 µl of Elution Buffer (EB).

Incubate at room temperature for 10 minutes.

Pellet the beads on the magnet until the eluate is clear and colourless.

Remove and retain 12 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Remove and retain the eluate which contains the cDNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
  • Dispose of the pelleted beads

For each sample, analyse 1 µl of the amplified cDNA for size, quantity and quality using a Qubit fluorometer and Agilent Bioanalyzer (or equivalent) for a QC check.

IMPORTANTE

Sometimes a high-molecular weight product is visible in the wells of the gel when the PCR products are run, instead of the expected smear. These libraries are typically associated with poor sequencing performance. We have found that repeating the PCR with fewer cycles can remedy this.

Take forward 50 fmol of amplified cDNA and make the volume up to 31 μl in Elution Buffer (EB).

Mass Molarity if fragment length = 0.5 kb Molarity if fragment length = 1.5 kb Molarity if fragment length = 3 kb
5 ng 16 fmol 5 fmol 3 fmol
10 ng 32 fmol 11 fmol 5 fmol
15 ng 49 fmol 16 fmol 8 fmol
20 ng 65 fmol 22 fmol 11 fmol
25 ng 81 fmol 27 fmol 13 fmol
50 ng 154 fmol 51 fmol 26 fmol
100 ng 324 fmol 108 fmol 54 fmol

If the quantity of amplified cDNA is above 50 fmol, the remaining cDNA can be frozen and stored for another sequencing experiment (in this case, library preparation would start from the Adapter Addition step). We recommend avoiding multiple freeze-thaw cycles to prevent DNA degradation.

CONSEJO

Recomendaciones de guardado de la biblioteca

Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.

5. Adapter addition

Material
  • Rapid Adapter (RA)
  • Adapter Buffer (ADB)
  • Elution Buffer (EB)

Consumibles
  • 1.5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Microcentrífuga
  • Cubeta con hielo
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
IMPORTANTE

The Rapid Adapter (RA) used in this kit and protocol is not interchangeable with other sequencing adapters.

Descongelar los componentes del kit a temperatura ambiente, centrifugar brevemente y mezclar con la pipeta, como se indica en la tabla a continuación: (1)

Reactivo 1. Descongelar a temperatura ambiente 2. Centrifugar brevemente 3. Mezclar con la pipeta
Fragmentation Mix (FRA) Descongelado
Rapid Adapter (RA) Descongelado
Adapter Buffer (ADB) Descongelado

En un tubo de 1,5 ml Eppendorf DNA LoBind, diluir el adaptador, Rapid Adapter (RA), como se indica a continuación y mezclar con la pipeta:

Reactivo Volumen
Rapid Adapter (RA) 1,5 μl
Adapter Buffer (ADB) 3,5 μl
Total 5 μl

Add 1 μl of the diluted Rapid Adapter (RA) to the amplified cDNA library, making the total volume 32 μl.

Mezclar golpeando suavemente el tubo con el dedo y centrifugar brevemente.

Incubate the reaction for 5 minutes at room temperature.

Spin down briefly.

FIN DEL PROCESO

The prepared library is used for loading onto the flow cell. Store the library on ice until ready to load.

6. Priming and loading the PromethION flow cell

Material
  • Flow Cell Flush (FCF)
  • Flow Cell Tether (FCT) (anclaje de celda de flujo)
  • Library Solution (LIS)
  • Library Beads (LIB) (microesferas de carga de la biblioteca)
  • Sequencing Buffer (SB)

Consumibles
  • Celda de flujo PromethION
  • Tubos de 1,5 ml Eppendorf DNA LoBind

Instrumental
  • PromethION 2 Solo device
  • Dispositivo PromethION 24/48
  • PromethION Flow Cell Light Shield
  • P1000 pipette and tips
  • P200 pipette and tips
  • Pipeta y puntas P20
IMPORTANTE

This kit is only compatible with R10.4.1 flow cells (FLO-PRO114M).

Uso de Library Solution (LIS)

En la mayoría de experimentos de secuenciación, recomendamos usar Library Beads (LIB) para cargar la biblioteca en la celda de flujo. Nótese, si previamente se ha usado agua para cargar la biblioteca, se deberá usar Library Solution (LIS) en su lugar. Nota: Algunos clientes han notado que las bibliotecas viscosas pueden cargarse con mayor facilidad cuando no se usan Library Beads (LIB).

Descongelar los viales Sequencing Buffer (SB), Library Beads (LIB) o Library Solution (LIS), -si se requiere-, y un tubo de Flow Cell Flush (FCF) a temperatura ambiente. Agitar en vórtex, centrifugar y colocar en hielo.

Prepare the flow cell priming mix in a suitable tube for the number of flow cells to flush. Once combined, mix well by briefly vortexing.

Reagent Volume per flow cell
Flow Cell Tether (FCT) 30 µl
Flow Cell Flush (FCF) 1170 µl
Total volume 1,200 µl
IMPORTANTE

Una vez sacadas de la nevera, esperar 20 minutos antes de insertar las celdas de flujo en el dispositivo y así darles tiempo a que estén a temperatura ambiente. En entornos húmedos se puede formar condensación. Inspeccione las clavijas doradas del conector, situadas en la parte superior e inferior de la celda de flujo, en busca de condensación y si la hubiera, límpiela con una toallita sin pelusa. Procure que la almohadilla térmica (color gris oscuro) esté enganchada en la parte posterior.

For PromethION 2 Solo, load the flow cell(s) as follows:

  1. Place the flow cell flat on the metal plate.

  2. Slide the flow cell into the docking port until the gold pins or green board cannot be seen.

J2068 FC-into-P2-animation V5

For the PromethION 24/48, load the flow cell(s) into the docking ports:

  1. Line up the flow cell with the connector horizontally and vertically before smoothly inserting into position.
  2. Press down firmly onto the flow cell and ensure the latch engages and clicks into place.

Step 1a V3

Step 1B

IMPORTANTE

Insertion of the flow cells at the wrong angle can cause damage to the pins on the PromethION and affect your sequencing results. If you find the pins on a PromethION position are damaged, please contact support@nanoporetech.com for assistance.

Screenshot 2021-04-08 at 12.08.37

Slide the inlet port cover clockwise to open.

Prom loading 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

After opening the inlet port, draw back a small volume to remove any air bubbles:

  1. Set a P1000 pipette tip to 200 µl.
  2. Insert the tip into the inlet port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you see a small volume of buffer entering the pipette tip.

Step 3 v1

Load 500 µl of the priming mix into the flow cell via the inlet port, avoiding the introduction of air bubbles. Wait five minutes. During this time, prepare the library for loading using the next steps in the protocol.

Step 4 v1

Mezclar con la pipeta, minuciosamente, el contenido del vial Library Beads (LIB).

IMPORTANTE

Este vial contiene microesferas en suspensión. Las microesferas precipitan muy rápido; por eso, es fundamental mezclarlas justo antes de usar.

En la mayoría de experimentos de secuenciación, se recomienda usar Library Beads (LIB) . El reactivo Library Solution (LIS) está indicado para bibliotecas de ADN más viscosas.

In a new 1.5 ml Eppendorf DNA LoBind tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer (SB) 100 µl
Library Beads (LIB) thoroughly mixed before use, or Library Solution (LIS) 68 µl
DNA library 32 µl
Total 200 µl

Note: Library loading volume has been increased to improve array coverage.

Complete the flow cell priming by slowly loading 500 µl of the priming mix into the inlet port.

Step 5 v1

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Load 200 µl of library into the inlet port using a P1000 pipette.

Step 6 v1

Close the valve to seal the inlet port.

Step 7 V2

IMPORTANTE

Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.

Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

If the light shield has been removed from the flow cell, install the light shield as follows:

  1. Align the inlet port cut out of the light shield with the inlet port cover on the flow cell. The leading edge of the light shield should sit above the flow cell ID.
  2. Firmly press the light shield around the inlet port cover. The inlet port clip will click into place underneath the inlet port cover.

J2264 - Light shield animation PromethION Flow Cell 8a FAW

J2264 - Light shield animation PromethION Flow Cell 8b FAW

FIN DEL PROCESO

Close the PromethION lid when ready to start a sequencing run on MinKNOW.

Wait a minimum of 10 minutes after loading the flow cells onto the PromethION before initiating any experiments. This will help to increase the sequencing output.

7. Data acquisition and basecalling

How to start sequencing

Once you have loaded your flow cell, the sequencing run can be started on MinKNOW, our sequencing software that controls the device, data acquisition and real-time basecalling. For more detailed information on setting up and using MinKNOW, please see the MinKNOW protocol.

MinKNOW can be used and set up to sequence in multiple ways:

  • On a computer either direcly or remotely connected to a sequencing device.
  • Directly on a GridION, MinION Mk1C or PromethION 24/48 sequencing device.

For more information on using MinKNOW on a sequencing device, please see the device user manuals:


To start a sequencing run on MinKNOW:

1. Navigate to the start page and click Start sequencing.

2. Fill in your experiment details, such as name and flow cell position and sample ID.

3. Select the sequencing kit used in the library preparation on the Kit page.

4. Configure the sequencing and output parameters for your sequencing run or keep to the default settings on the Run configuration tab.

Note: If basecalling was turned off when a sequencing run was set up, basecalling can be performed post-run on MinKNOW. For more information, please see the MinKNOW protocol.

5. Click Start to initiate the sequencing run.

Análisis de datos

Una vez la secuenciación ha finalizado, es posible reutilizar o devolver la celda de flujo, como se describe en la sección sobre Reutilización o retorno de celdas de flujo.

Tras secuenciar e identificar las bases, es posible analizar los datos. Si desea más información sobre las opciones de identificación de bases y de análisis posterior, consulte el documento Data Analysis.

En la sección Análisis posterior, se describen otras opciones para analizar los datos.

8. Flow cell reuse and returns

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a 2-8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

Nota: Antes de proceder a su devolución, las celdas de flujo deben lavarse con agua desionizada.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

9. Downstream analysis

Análisis posterior a la identificación de bases

Existen varias opciones para completar el análisis de los datos de identificación de bases:

1. Procesos de trabajo en EPI2ME

Para realizar un análisis de datos exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y procesos de trabajo de bioinformática, disponibles en EPI2ME Labs, situados en la sección EPI2ME Labs de la comunidad Nanopore. La plataforma proporciona un espacio donde los procesos de trabajo que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.

2. Herramientas de análisis

El departamento de Investigación de Oxford Nanopore Technologies ha creado una serie de herramientas de análisis que están disponibles en el repositorio Oxford Nanopore de GitHub. Las herramientas están diseñadas para usuarios avanzados y contienen instrucciones sobre cómo instalar y ejecutar el programa. Estas herramientas están públicamente disponibles y cuentan con un mantenimiento mínimo.

3. Herramientas de análisis desarrolladas por la comunidad

Si en ninguno de los recursos anteriores se proporciona un método de análisis que responda a las necesidades de investigación requeridas, puede consultar la sección Bioinformatics del centro de recursos Resource Centre. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y cartera de productos en desarrollo para analizar los datos de la secuenciación por nanoporos. La mayoría de ellas está disponible en GitHub. Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/software.

10. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Baja calidad de la muestra

Observación Posible causa Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

11. Issues during the sequencing run

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que después de verificar la celda de flujo

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales.

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

Longitud de lectura más corta de lo esperado

Observación Posible causa Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles.
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones:

1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte la página Plant leaf DNA extraction method.
2. Limpiar usando el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación

Observación Posible causa Comentarios y acciones recomendadas
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo.

Fluctuación de la temperatura

Observación Posible causa Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez acabado el tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Para obtener más información sobre el control de temperatura de MinKNOW Mk 1B, consulte la sección de preguntas frecuentes, FAQ.

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 4/19/2024

Document options

PromethION