Chromatin conformation
- Home
- Chromatin conformation
- Use long nanopore reads to generate enhanced, multi-way chromatin interaction data
- Generate new insights into gene expression, enhance genome assembly contiguity, and investigate modified bases
- Utilise the complete, end-to-end Pore-C chromosome conformation capture workflow — from sample to results
A complete, end-to-end workflow for chromosome conformation capture
Chromatin conformation capture (3C) techniques reveal genomic interactions in three dimensions. This can provide key information on the effect of chromatin structure on transcriptional regulation; the data can also be utilised to orient contigs, producing highly contiguous scaffolded assemblies. However, the traditionally used short-read 3C methodology limits the number of contacts available to analyse per read. Combining chromatin conformation capture with long nanopore reads, Pore-C provides long-range contact information, shedding light on higher-order structure. The technique is PCR free, allowing the characterisation of base modifications in the same dataset.
Featured content
Unprecedented access to haplotype-resolved biology
Discover how the combination of long, amplification-free nanopore sequencing reads and highly accurate SNP calling enables co-phasing of variants and imprinted regions for parent-of-origin inference from a single sample.
Improving plant genome assemblies with Pore-C
Taking you all the way from sample to result, this best-practice workflow supports the generation of highly contiguous, chromosome-scale plant genome assemblies.
PromethION 2 devices
Offering the flexibility of two independent, high-output PromethION Flow Cells, the compact PromethION 2 devices bring the benefits of high-coverage, real-time nanopore sequencing to every lab. Ideal for low-cost access to long and ultra-long reads suitable for chromatin conformation studies and highly accurate whole-genome assemblies.
Technology comparison
Oxford Nanopore sequencing
Legacy short-read sequencing
Any read length (20 bp to >4 Mb)
Short read length (<300 bp)
- Generate complete, high-quality genomes with fewer contigs and simplify de novo assembly
- Resolve genomic regions inaccessible to short reads, including complex structural variants (SVs) and repeats
- Analyse long-range haplotypes, accurately phase single nucleotide variants (SNVs) and base modifications, and identify parent-of-origin effects
- Sequence short DNA fragments, such as amplicons and cell-free DNA (cfDNA)
- Sequence and quantify full-length transcripts to annotate genomes, fully characterise isoforms, and analyse gene expression — including at single-cell resolution
- Assembly contiguity is reduced and complex computational analyses are required to infer results
- Complex genomic regions such as SVs and repeat elements typically cannot be sequenced in single reads (e.g. transposons, gene duplications, and prophage sequences)
- Transcript analysis is limited to gene-level expression data
- Important genetic information is missed
Direct sequencing of native DNA/RNA
Amplification required
- Eliminate amplification- and GC-bias, along with read length limitations, and access genomic regions that are difficult to amplify
- Detect epigenetic modifications, such as methylation, as standard — no additional, time-consuming sample prep required
- Create cost-effective, amplification-free, targeted panels with adaptive sampling to detect SVs, repeats, SNVs, and methylation in a single assay
- Amplification is often required and can introduce bias
- Base modifications are removed, necessitating additional sample prep, sequencing runs, and expense
- Uniformity of coverage is reduced, resulting in assembly gaps
Real-time data streaming
Fixed run time with bulk data delivery
- Analyse data as it is generated for immediate access to actionable results
- Stop sequencing when sufficient data is obtained — wash and reuse flow cell
- Combine real-time data streaming with intuitive, real-time EPI2ME data analysis workflows for deeper insights
- Time to result is increased
- Workflow errors cannot be identified until it is too late
- Additional complexities of handling large volumes of bulk data
Accessible and affordable sequencing
Constrained to centralised labs
- Sequence on demand with flexible end-to-end workflows that suit your throughput needs
- Sequence at sample source, even in the most extreme or remote environments, with the portable MinION device — minimise potential sample degradation caused by storage and shipping
- Scale up with modular GridION and PromethION devices — suitable for high-output, high-throughput sequencing to generate ultra-rich data
- Perform cost-effective targeted analyses with single-use Flongle Flow Cells
- Sequence as and when needed using low-cost, independently addressable flow cells — no sample batching needed
- Use sample barcodes to multiplex samples on a single flow cell
- Bulky, expensive devices that require substantial site infrastructure — use is restricted to well-resourced, centralised locations, limiting global accessibility
- High sample batching is required for optimal efficiency, delaying time to results
Streamlined, automatable workflows
Laborious workflows
- Prepare samples in as little as 10 minutes, including multiplexing
- Use end-to-end whole-genome, metagenomic, targeted (including 16S barcoding), direct RNA and cDNA sequencing workflows
- Scale and automate your workflows to suit your sequencing needs
- Perform real-time enrichment of single targets or panels without additional wet-lab prep by using adaptive sampling
- Lengthy sample prep is required
- Long sequencing run times
- Workflow efficiency is reduced, and time to result is increased