Targeted sequencing

Subscribe

The capacity to obtain haplotype-resolved DNA methylation profiles, in addition to STR size and interruption status, all in a single, simple assay is a clear advantage

Stevanovski, I. et al. Sci. Adv. (2022)

  • Single comprehensive assay icon
    Expand your targeted sequencing assays: fully characterise SNVs, SVs, repeats, epigenetic modifications, and haplotypes
  • A blue icon representing a target
    Utilise amplicon sequencing, hybridisation capture, or on-device targeting using adaptive sampling
  • Real-time sequencing icon
    Analyse data in real time for immediate access to results
Intro

Expand the capabilities of your targeted sequencing assays

Enabling the generation of any length of sequencing read — from short to ultra long (20 bp to >4 Mb) — nanopore technology expands the capabilities of targeted sequencing approaches beyond the analysis of single nucleotide variants (SNVs), to include high-coverage characterisation and phasing of structural variants (SV), repetitive regions, and base modifications. Real-time data analysis provides faster access to results and underpins adaptive sampling — a unique on-device enrichment methodology that requires no additional wet-lab prep.

DNA helix image

Technology comparison

Oxford Nanopore sequencing

Legacy short-read sequencing

Any read length (20 bp to >4 Mb)

Short read length (<300 bp)

  • Resolve genomic regions inaccessible to short reads, including complex structural variants (SVs) and repeats
  • Analyse long-range haplotypes, accurately phase single nucleotide variants (SNVs) and base modifications, and identify parent-of-origin effects
  • Sequence short DNA fragments, such as amplicons and cell-free DNA (cfDNA)
  • Enhance taxonomic resolution using full-length reads of informative loci, such as the entire 16S gene
  • Assembly contiguity is reduced and complex computational analyses are required to infer results
  • Complex genomic regions such as SVs and repeat elements typically cannot be sequenced in single reads (e.g. transposons, gene duplications, and prophage sequences)
  • Important genetic information is missed

Direct sequencing of native DNA/RNA

Amplification required

  • Eliminate amplification- and GC-bias, along with read length limitations, and access genomic regions that are difficult to amplify
  • Detect epigenetic modifications, such as methylation, as standard — no additional, time-consuming sample prep required
  • Create cost-effective, amplification-free, targeted panels with adaptive sampling to detect SVs, repeats, SNVs, and methylation in a single assay
  • Amplification is often required and can introduce bias
  • Base modifications are removed, necessitating additional sample prep, sequencing runs, and expense
  • Uniformity of coverage is reduced, resulting in assembly gaps

Real-time data streaming

Fixed run time with bulk data delivery

  • Analyse data as it is generated for immediate access to actionable results
  • Stop sequencing when sufficient data is obtained — wash and reuse flow cell
  • Combine real-time data streaming with intuitive, real-time EPI2ME data analysis workflows for deeper insights
  • Time to result is increased
  • Workflow errors cannot be identified until it is too late
  • Additional complexities of handling large volumes of bulk data

Accessible and affordable sequencing

Constrained to centralised labs

  • Sequence on demand with flexible end-to-end workflows that suit your throughput needs
  • Sequence at sample source, even in the most extreme or remote environments, with the portable MinION device — minimise potential sample degradation caused by storage and shipping
  • Scale up with modular GridION and PromethION devices — suitable for high-output, high-throughput sequencing to generate ultra-rich data
  • Perform cost-effective targeted analyses with single-use Flongle Flow Cells
  • Sequence as and when needed using low-cost, independently addressable flow cells — no sample batching needed
  • Use sample barcodes to multiplex samples on a single flow cell
  • Bulky, expensive devices that require substantial site infrastructure — use is restricted to well-resourced, centralised locations, limiting global accessibility
  • High sample batching is required for optimal efficiency, delaying time to results

Streamlined, automatable workflows

Laborious workflows

  • Lengthy sample prep is required
  • Long sequencing run times
  • Workflow efficiency is reduced, and time to result is increased