Environmental research and conservation

Subscribe

By enabling researchers to identify species rapidly and accurately, Oxford Nanopore may revolutionise the field of biodiversity research, especially ... in developing countries.

Mariana Corrales Orozco, EAFIT University, Colombia

  • Blue icon displaying a MinION Mk1D device
    Sequence at the sample source, even in extreme environments, with the portable MinION sequencer
  • Blue icon illustrating several microbes within a microbiome
    Comprehensively characterise environmental microbiomes with complete metagenome-assembled genomes (MAGs)
  • Real-time icon blue
    Gain rapid answers with fast workflows and real-time data streaming
Intro

Advancing environmental research with nanopore sequencing

Portable and affordable nanopore sequencing technology delivers unique opportunities for environmental research. It has been used extensively to analyse environmental DNA (eDNA) and microbiome samples to support biodiversity assessment, ecosystem biomonitoring, pathogen identification, and animal conservation. Long nanopore reads provide enhanced species identification, while real-time data analysis delivers immediate access to results, whether in the field or in the lab.

Photograph of a river in the Peruvian Amazon

Technology comparison

Oxford Nanopore sequencing

Legacy short-read sequencing

Any read length (20 bp to >4 Mb)

Short read length (<300 bp)

  • Generate complete, high-quality genomes with fewer contigs and simplify de novo assembly
  • Resolve genomic regions inaccessible to short reads, including complex structural variants (SVs) and repeats
  • Analyse long-range haplotypes, accurately phase single nucleotide variants (SNVs) and base modifications, and identify parent-of-origin effects
  • Sequence short DNA fragments, such as amplicons and cell-free DNA (cfDNA)
  • Sequence and quantify full-length transcripts to annotate genomes, fully characterise isoforms, and analyse gene expression — including at single-cell resolution
  • Resolve mobile genetic elements — including plasmids and transposons — to generate critical genomic insights
  • Enhance taxonomic resolution using full-length reads of informative loci, such as the entire 16S gene
  • Assembly contiguity is reduced and complex computational analyses are required to infer results
  • Complex genomic regions such as SVs and repeat elements typically cannot be sequenced in single reads (e.g. transposons, gene duplications, and prophage sequences)
  • Transcript analysis is limited to gene-level expression data
  • Important genetic information is missed

Direct sequencing of native DNA/RNA

Amplification required

  • Eliminate amplification- and GC-bias, along with read length limitations, and access genomic regions that are difficult to amplify
  • Detect epigenetic modifications, such as methylation, as standard — no additional, time-consuming sample prep required
  • Create cost-effective, amplification-free, targeted panels with adaptive sampling to detect SVs, repeats, SNVs, and methylation in a single assay
  • Amplification is often required and can introduce bias
  • Base modifications are removed, necessitating additional sample prep, sequencing runs, and expense
  • Uniformity of coverage is reduced, resulting in assembly gaps

Real-time data streaming

Fixed run time with bulk data delivery

  • Analyse data as it is generated for immediate access to actionable results
  • Stop sequencing when sufficient data is obtained — wash and reuse flow cell
  • Combine real-time data streaming with intuitive, real-time EPI2ME data analysis workflows for deeper insights
  • Time to result is increased
  • Workflow errors cannot be identified until it is too late
  • Additional complexities of handling large volumes of bulk data

Accessible and affordable sequencing

Constrained to centralised labs

  • Sequence on demand with flexible end-to-end workflows that suit your throughput needs
  • Sequence at sample source, even in the most extreme or remote environments, with the portable MinION device — minimise potential sample degradation caused by storage and shipping
  • Scale up with modular GridION and PromethION devices — suitable for high-output, high-throughput sequencing to generate ultra-rich data
  • Perform cost-effective targeted analyses with single-use Flongle Flow Cells
  • Sequence as and when needed using low-cost, independently addressable flow cells — no sample batching needed
  • Use sample barcodes to multiplex samples on a single flow cell
  • Bulky, expensive devices that require substantial site infrastructure — use is restricted to well-resourced, centralised locations, limiting global accessibility
  • High sample batching is required for optimal efficiency, delaying time to results

Streamlined, automatable workflows

Laborious workflows

  • Lengthy sample prep is required
  • Long sequencing run times
  • Workflow efficiency is reduced, and time to result is increased