Rapid sequencing amplicons - 16S barcoding (SQK-16S024)

Overview

For Research Use Only

This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.

Document version: 16S_9086_v1_revZ_14Aug2019

1. Overview of the protocol

IMPORTANTE

This is a Legacy product

This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.

16S Barcoding Kit 1-24 features

This kit is recommended for users who:

  • wish to multiplex samples to reduce price per sample
  • want to do 16S sequencing
  • are interested in genus level bacterial identification

Introduction to the 16S Barcoding Kit 1-24

This protocol describes how to carry out rapid barcoding of 16S amplicons using the 16S Barcoding Kit 1-24 (SQK-16S024). Due to the presence of both highly conserved (adequate for universal primers and phylogenetic signal) and highly variant regions (different across species), the 16S rRNA gene is often used for sequence-based bacterial identification.

The 16S Barcoding Kit 1-24 enables access to rapid 16S sequencing for organism identification. By narrowing down to a specific region of interest, a user can see all the organisms in the sample without sequencing unneccesary regions of the genome, making the test quicker and more economical. There are 24 unique barcodes, allowing the user to pool up to 24 different samples in one sequencing experiment.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

You will need to:

  • Amplify the 16S gene using barcodes supplied in the kit
  • Clean up the library on beads
  • Attach rapid sequencing adapters supplied in the kit to the DNA ends
  • Prime the flow cell, and load your DNA library into the flow cell

16S barcoding workflow

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Start the EPI2ME software and select the FASTQ 16S workflow
IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

  • 16S Barcoding Kit 1-24 (SQK-16S024)
  • R9.4.1 (FLO-MIN106) flow cells
  • Flow Cell Wash Kit (EXP-WSH004)
  • Auxiliary Sequencing Vials (EXP-AUX001)
  • RAP Top-Up Kit (EXP-RAP001)

2. Equipment and consumables

Material
  • 10 ng high molecular weight genomic DNA
  • 16S Barcoding Kit 1-24 (SQK-16S024)
  • Flow Cell Priming Kit (EXP-FLP002)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Tubos de PCR de pared fina (0,2 ml)
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Freshly prepared 70% ethanol in nuclease-free water
  • 10 mM Tris-HCl pH 8.0 with 50 mM NaCl

Instrumental
  • Microcentrífuga
  • Temporizador
  • Thermal cycler
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Multichannel pipette and tips
Equipo opcional
  • Bioanalizador Agilent (o equivalente)
  • Qubit fluorometer (or equivalent for QC check)
  • Centrifuga Eppendorf 5424 (o equivalente)

For this protocol, you will need 10 ng high molecular weight genomic DNA per barcode.

Cantidad de muestra inicial de ADN

Cómo realizar un control de calidad de la muestra inicial de ADN

Es importante que la muestra de ADN cumpla con los requisitos de cantidad y calidad. Usar demasiado ADN, poco o de mala calidad (p. ej., que esté muy fragmentado, que contenga ARN o contaminantes químicos), puede afectar a la preparación de la biblioteca.

Para realizar un control de calidad en la muestra de ADN, consulte el protocolo Input DNA/ RNA QC

Contaminantes químicos

Dependiendo de cómo se extraiga el ADN de la muestra cruda, ciertos contaminantes químicos pueden permanecer en el ADN purificado, lo cual afecta la eficacia de la preparación de la biblioteca y la calidad de la secuenciación. Encontrará más información sobre contaminantes en la página Contaminants de la comunidad Nanopore.

16S Barcoding Kit contents

16s024 v1

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
16S Barcode Primers 01-24 1-24 - 2 plates, 3 strips per plate 15 μl per well
Rapid Adapter RAP Green 1 10
Sequencing Buffer SQB Red 1 300
Loading Beads LB Pink 1 360
IMPORTANTE

Please note that the Sequencing Tether (SQT) tube will NOT be used in this protocol.

Flow Cell Priming Kit contents (EXP-FLP002)

FLP

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Flush Buffer FB Blue 6 1,170
Flush Tether FLT Purple 1 200

The RAP Top-Up Kit (EXP-RAP001) is available to provide enough reagents for another six reactions depending on how the barcodes are used.

This kit contains reagents to be used with any remaining barcodes to load another six sequencing libraries.

EXP-RAP001 tubes

Reagent Acronym Cap colour No. of vials Fill volume per vial (µl)
Rapid Adapter RAP Green 1 10
Sequencing Tether SQT Purple 1 10
Loading Beads LB Pink 1 360
Sequencing Buffer SQB Red 1 300

3. Computer requirements and software

Requisitos informáticos para el MinION Mk1B

Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.

Requisitos informáticos para el MinION Mk1C

El MinION Mk1C contiene ordenador y pantalla integrados, lo que elimina la dependencia de cualquier accesorio para generar y analizar datos de nanoporos. Encontrará más información en el documento MinION Mk1C IT Requirements.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en los primeros tres meses desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000

4. Library preparation

Material
  • 10 ng high molecular weight genomic DNA
  • 16S Barcodes in 96-well plate, at 1 μM each
  • Rapid Adapter (RAP)

Consumibles
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • Freshly prepared 70% ethanol in nuclease-free water
  • 10 mM Tris-HCl pH 8.0 with 50 mM NaCl
  • Tubos de PCR de pared fina (0,2 ml)

Instrumental
  • Thermal cycler
  • Mezclador Hula (mezclador giratorio suave)
  • Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
  • Cubeta con hielo
  • Microcentrífuga
  • Multichannel pipette and tips
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2

Take one 96-well plate containing 16S barcodes. Break one set of barcodes (1-24, or as desired) away from the plate and return the rest to storage.

IMPORTANTE

The 96-well plates are designed to break in one direction only. Strips, or multiple strips, of eight wells/barcodes can be removed from the plate at any one time.

Thaw the desired barcodes, make sure the liquid is at the bottom of the tubes, and place on ice.

Thaw the LongAmp Hot Start Taq 2X Master Mix, spin down briefly, mix well by pipetting and place on ice.

Prepare the DNA in nuclease-free water.

  • Transfer 10 ng genomic DNA into a DNA LoBind tube
  • Adjust the volume to 10 μl with nuclease-free water
  • Mix thoroughly by flicking the tube, to avoid unwanted shearing
  • Spin down briefly in a microfuge

For each sample to be tested, prepare the following mixture in separate 0.2 ml thin-walled PCR tubes.

Reagent Volume
Nuclease-free water 5 µl
Input DNA (10 ng) 10 µl
LongAmp Hot Start Taq 2X Master Mix 25 µl
Total 40 µl

If the amount of input material is altered, the number of PCR cycles may need to be adjusted to produce the same yield.

Ensure the components are thoroughly mixed by pipetting, and spin down.

Using clean pipette tips, carefully pierce the foil surface of the required barcodes. Use a new tip for each barcode to avoid cross-contamination. Make a note of which barcode numbers will be run for each sample.

Using a multichannel pipette, mix the 16S barcodes by pipetting up and down 10 times. Transfer 10 μl of each 16S Barcode into respective sample-containing tubes.

The layout of the barcodes in the plate are as follows:

16s kit contents

Mix thoroughly by pipetting up and down ten times.

Amplify using the following cycling conditions:

Cycle step Temperature Time No. of cycles
Initial denaturation 95 °C 1 min 1
Denaturation 95 °C 20 secs 25
Annealing 55 °C 30 secs 25
Extension 65 °C 2 mins 25
Final extension 65 °C 5 mins 1
Hold 4 °C

Transfer each sample to a separate 1.5 ml DNA LoBind Eppendorf tube. Carry out steps 11-21 for each sample, before pooling the samples at step 22.

Resuspend the AMPure XP beads by vortexing.

Add 30 µl of resuspended AMPure XP beads to the reaction and mix by pipetting.

Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.

Prepare 500 μl of fresh 70% ethanol in nuclease-free water.

Centrifugar la muestra y precipitar en un imán. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repetir el paso anterior.

Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.

Remove the tube from the magnetic rack and resuspend pellet in 10 µl of 10 mM Tris-HCl pH 8.0 with 50 mM NaCl. Incubate for 2 minutes at room temperature.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove and retain 10 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Dispose of the pelleted beads
CHECKPOINT

Quantify 1 µl of eluted sample using a Qubit fluorometer.

Pool all barcoded libraries in the desired ratios to a total of 50-100 fmoles in 10 μl of 10 mM Tris-HCl pH 8.0 with 50 mM NaCl. For 16S amplicons of ~1500 bp, 50-100 fmoles equates to ~50-100 ng.

Add 1 μl of RAP to the barcoded DNA.

Mix gently by flicking the tube, and spin down.

Incubate the reaction for 5 minutes at room temperature.

FIN DEL PROCESO

The prepared library is used for loading into the flow cell. Store the library on ice until ready to load.

MEDIDA OPCIONAL

If quantities allow, the libraries may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.

Additional Elution Buffer (EB) for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX001), available to purchase separately.

5. Priming and loading the SpotON flow cell

Material
  • Flow Cell Priming Kit (EXP-FLP002)
  • Sequencing Buffer (SQB)
  • Loading Beads (LB)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)

Instrumental
  • MinION Mk1B or Mk1C
  • SpotON Flow Cell
  • Pantalla protectora para celdas de flujo MinION
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10

Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down at room temperature.

To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.

Open the MinION device lid and slide the flow cell under the clip.

Press down firmly on the flow cell to ensure correct thermal and electrical

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.

Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de mezcla de cebado en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Thoroughly mix the contents of the Loading Beads (LB) tubes by vortexing.

IMPORTANTE

The Loading Beads (LB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer (SQB) 34 µl
Loading Beads (LB), mixed immediately before use 25.5 µl
Nuclease-free water 4.5 µl
DNA library 11 µl
Total 75 µl

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer (SQB) and Loading Beads (LB) because the fuel in the buffer will start to be consumed by the adapter.

Completar el cebado de la celda de flujo:

  1. Levantar suavemente la tapa del puerto de muestra SpotON.
  2. Cargar 200 µl de mezcla de cebado en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

6. Adquisición de datos e identificación de bases

Cómo empezar a secuenciar

Una vez cargada la celda de flujo, se puede iniciar el experimento en MinKNOW -el programa de secuenciación que gestiona el dispositivo, la adquisición de datos y la identificación de bases en tiempo real. Encontrará intrucciones de uso más detalladas en el protocolo de MinKNOW.

MinKNOW se puede configurar y utilizar para secuenciar de diferentes maneras:

  • En un ordenador conectado a un dispositivo de secuenciación, ya sea directamente o en remoto.
  • Directamente desde un dispositivo de secuenciación GridION, MinION Mk1C o PromethION 24/48.

Encontrará más información sobre el uso de MinKNOW en los manuales de usuario de los dispositivos:


Para empezar un experimento de secuenciación en MinKNOW:

1. Ir a la página de inicio y pulsar "Iniciar secuenciación". start

2. Introducir los datos del experimento, como el nombre, la posición de la celda de flujo y el identificador de muestra. Grid start seq

3. En la pestaña Kit, seleccionar el kit de secuenciación usado durante la preparación de la biblioteca. kit selection

4. En las pestañas Run Options/Opciones de ejecución y Análisis, es posible configurar los parámetros de secuenciación adaptándolos al experimento o mantener la configuración predeterminada.

Nota: Si la identificación de bases estaba desactivada durante la configuración de un experimento, se puede activar en MinKNOW en la fase posejecución. Para más información, consulte el protocolo de MinKNOW.

5. En la pestaña Output/Datos de salida, es posible elegir entre configurar los parámetros de salida o mantener la configuración predeterminada. step5c

6. En la pestaña Review/Revisar, revisar las opciones seleccionadas y pulsar Start/Empezar. Step6

Análisis de datos tras la secuenciación

Una vez la secuenciación ha finalizado, la celda de flujo se puede reutilizar o devolver, como se indica en la sección Reutilización y devoluciones de celdas de flujo.

Tras la secuenciación y la identificación de bases, se puede proceder a analizar los datos. Si desea más información sobre las opciones de identificación de bases y de análisis posterior, consulte el documento Data Analysis.

En la sección Downstream analysis/Análisis posterior, le presentamos otras opciones para analizar los datos.

7. Reutilización y devoluciones de las celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a 2-8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

Nota: Antes de proceder a su devolución, las celdas de flujo deben lavarse con agua desionizada.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

8. Análisis posterior

Análisis posterior a la identificación de bases

Existen varias opciones para completar el análisis de los datos de bases identificadas:

1. Plataforma EPI2ME

La plataforma EPI2ME es un servicio de análisis de datos, alojado en la red, desarrollado por Metrichor Ltd., filial de Oxford Nanopore Technologies. EPI2ME ofrece una serie de procesos de análisis, p. ej., de identificación metagenómica, identificación de especies a partir de un código (barcoding), alineación e identificación de variantes estructurales. El análisis no requiere equipo ni capacidad computacional extra y proporciona un informe fácil de interpretar con los resultados. Para obtener información sobre cómo realizar un proceso de análisis en EPI2ME, siga las instrucciones del protocolo, empezando por la sección "Starting data analysis".

2. EPI2ME Labs, tutoriales y procesos de trabajo

Para realizar un análisis de datos más exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y procesos de trabajo de bioinformática, disponibles en EPI2ME Labs, que encontrará en la sección del mismo nombre de la comunidad Nanopore. La plataforma proporciona un espacio donde los proyectos que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.

3. Herramientas de análisis para la investigación

El departamento de Investigación de Oxford Nanopore Technologies ha creado una serie de herramientas de análisis que están disponibles en el repositorio Oxford Nanopore de GitHub. Las herramientas están diseñadas para usuarios avanzados y contienen instrucciones sobre cómo instalar y ejecutar el programa. Estas herramientas están públicamente disponibles y cuentan con un mantenimiento mínimo.

4. Herramientas de análisis desarrolladas por la comunidad

Si no se proporciona en ninguno de los recursos anteriores un método de análisis que responda a las necesidades de investigación requeridas, puede consultar la sección Bioinformatics del centro de recursos Resource Centre. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y segmentaciones para analizar datos de secuenciación por nanoporos. La mayoría de ellos está disponible en GitHub. Nótese que Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/software.

9. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Baja calidad de la muestra

Observación Posible causa Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

10. Issues during the sequencing run

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que después de verificar la celda de flujo

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales.

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

Longitud de lectura más corta de lo esperado

Observación Posible causa Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles.
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones:

1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte la página Plant leaf DNA extraction method.
2. Limpiar usando el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación

Observación Posible causa Comentarios y acciones recomendadas
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo.

Fluctuación de la temperatura

Observación Posible causa Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector están bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez acabado el tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo de secuenciación para asegurarse de que se encuentra a temperatura ambiente y con buena ventilación; a continuación, reinicie el proceso en MinKNOW. Para obtener más información sobre el control de temperatura de MinKNOW Mk 1B, consulte la sección de preguntas frecuentes, FAQ.

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 12/6/2023

Document options

MinION