Ligation sequencing influenza whole genome V14 (SQK-NBD114.24 or SQK-NBD114.96)
- Home
- Documentation
- Ligation sequencing influenza whole genome V14 (SQK-NBD114.24 or SQK-NBD114.96)
MinION: Protocol
Ligation sequencing influenza whole genome V14 (SQK-NBD114.24 or SQK-NBD114.96) V INF_9189_v114_revI_20Nov2024
- This protocol uses extracted RNA samples
- Includes reverse transcription and PCR amplification using two separate primer schemes for Influenza A and Influenza B
- Includes quantification and normalisation steps to ensure equal distribution of barcodes for 24, 48 and 96 samples.
- Compatible with R10.4.1 flow cells
For Research Use Only
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 4. Reverse transcription, PCR and clean-up
- 5. End-prep
- 6. Native barcode ligation
- 7. Adapter ligation and clean-up
- 8. Priming and loading the SpotON flow cell
测序及数据分析 (3)
疑难解答指南
概览
- This protocol uses extracted RNA samples
- Includes reverse transcription and PCR amplification using two separate primer schemes for Influenza A and Influenza B
- Includes quantification and normalisation steps to ensure equal distribution of barcodes for 24, 48 and 96 samples.
- Compatible with R10.4.1 flow cells
For Research Use Only
1. Overview of the protocol
Introduction to the influenza whole genome sequencing protocol
This protocol has been upgraded to our Kit 14 chemistry and describes how to carry out PCR amplification and native barcoding of influenza amplicons using the Native Barcoding Kit 24 or 96 V14 (SQK-NBD114.24 or SQK-NBD114.96). There are 96 unique barcodes available, allowing the user to pool up to 96 different Influenza A and/or Influenza B samples in one sequencing experiment.
While this protocol is available in the Nanopore Community, we kindly ask users to ensure they are citing the following references, that this protocol is based on.
Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza A viruses by Bin Zhou et al., 2009. and Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics by Bin Zhou et al., 2014.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Ensure you have the sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Prepare your library
You will need to:
- Perform RT-PCR amplification on influenza samples
- Prepare the DNA ends for adapter attachment
- Ligate native barcodes supplied in the kit to the DNA ends
- Ligate sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell
Sequencing
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and basecall the reads
- Demultiplex barcoded reads in MinKNOW choosing the SQK-NBD114.24 or SQK-NBD114.96 kit option
- Analyse your data using the Influenza typing workflow (wf-flu) in EPI2ME Labs.
重要
我们不建议在测序前混合含条码文库与无条码文库。
重要
Compatibility of this protocol
This protocol should only be used in combination with:
- Native Barcoding Kit 24 V14 (SQK-NBD114.24)
- Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- R10.4.1 flow cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
- Sequencing Auxiliary Vials V14 (EXP-AUX003)
- Native Barcoding Expansion V14 (EXP-NBA114)
2. Equipment and consumables
材料
- Input influenza RNA
- Influenza A primers
- Influenza B primers
- Native Barcoding Kit 24 V14 (SQK-NBD114.24) OR Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- SFB Expansion (EXP-SFB001)
耗材
- SuperScript III One-Step RT-PCR System with Platinum Taq DNA Polymerase (ThermoFisher, cat # 12574018 or 12574026)
- 无核酸酶水(如ThermoFisher,AM9937)
- Agencourt AMPure XP Beads (Beckman Coulter™, A63881)
- 新制备的80%乙醇(用无核酸酶水配制)
- NEB Blunt/TA 连接酶预混液(NEB,M0367)
- NEBNext Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- NEBNext 快速连接模块(NEB,E6056)
- Eppendorf低吸附twin.tec®96孔PCR板,半裙边(Eppendorf™,0030129504)带热封
- 1.5 ml Eppendorf DNA LoBind 离心管
- 2 ml Eppendorf DNA LoBind 离心管
- 5 ml Eppendorf DNA LoBind tubes
- 15 ml Eppendorf DNA LoBind tubes
- Reagent reservoirs for multichannel pipetting
- Qubit™ 分析管(Invitrogen, Q32856)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
- (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
仪器
- 适用于1.5ml Eppendorf 离心管的磁力架
- Magnetic rack suitable for 96 well plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher CAT#12027)
- 迷你离心机
- 涡旋混匀仪
- 热循环仪
- Hula混匀仪(低速旋转式混匀仪)
- 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
- 多通道移液枪和枪头
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
- 盛有冰的冰桶
- 计时器
- Qubit荧光计(或用于质控检测的等效仪器)
可选仪器
- PCR hoods with UV steriliser
- PCR-Cooler (Eppendorf)
- Eppendorf 5424 离心机(或等效器材)
For this protocol, you will need your extracted Influenza RNA input in 10 mM Tris-HCl, pH 8.0.
A minimum volume of 1 µl is required per sample input of Influenza A or B.
If performing typing of an unknown sample, 2 µl of input will be required:
- 1 µl input for the Influenza A primer mix
- 1 µl for the Influenza B primer mix
Before starting
This protocol outlines how to carry out PCR amplification and native barcoding of influenza amplicons from multiple samples on a 96-well plate using the Native Barcoding Kit 24 or 96 V14 (SQK-NBD114.24 or SQK-NBD114.96).
When processing multiple samples simultaneously, we recommend making master mixes with an additional 10% of the volume. We also recommend using a template-free pre-PCR hood for making up the master mixes, and a separate template pre-PCR hood for handling the samples. It is important to clean and/or UV irradiate these hoods between sample batches. Furthermore, to track and monitor cross-contamination events, it is important to run a negative control reaction at the reverse transcription stage using nuclease-free water instead of sample, and carrying this control through the rest of the prep.
All post-PCR procedures must be carried out in a separate area to the pre-PCR preparation, with dedicated equipment for liquid handling in each area.
第三方试剂
Oxford Nanopore Technologies推荐您使用本实验指南中提及的所有第三方试剂,并已对其加以验证。我们尚未对其它替代试剂进行测试。
我们建议您按制造商说明准备待用的第三方试剂.
Influenza primer sequences
Influenza A primer sequences described in the protocol originated from: Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza A viruses by Bin Zhou et al., 2009.
Component | Sequence |
---|---|
Tuni 12 | ACGCGTGATCAGCAAAAGCAGG |
Tuni 12.4 | ACGCGTGATCAGCGAAAGCAGG |
Tuni 13 | ACGCGTGATCAGTAGAAACAAGG |
Influenza B primer sequences described in the protocol originated from: Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics by Bin Zhou et al., 2014.
Component | Sequence |
---|---|
B-PBs-UniF | GGGGGGAGCAGAAGCGGAGC |
B-PBs-UniR | CCGGGTTATTAGTAGAAACACGAGC |
B-PA-UniF | GGGGGGAGCAGAAGCGGTGC |
B-PA-UniR | CCGGGTTATTAGTAGAAACACGTGC |
B-HANA-UniF | GGGGGGAGCAGAAGCAGAGC |
B-HANA-UniR | CCGGGTTATTAGTAGTAACAAGAGC |
B-NP-UniF | GGGGGGAGCAGAAGCACAGC |
B-NP-UniR | CCGGGTTATTAGTAGAAACAACAGC |
B-M-Uni3F | GGGGGGAGCAGAAGCACGCACTT |
B-Mg-Uni3F | GGGGGGAGCAGAAGCAGGCACTT |
B-M-Uni3R | CCGGGTTATTAGTAGAAACAACGCACTT |
B-NS-Uni3F | GGGGGGAGCAGAAGCAGAGGATT |
B-NS-Uni3R | CCGGGTTATTAGTAGTAACAAGAGGATT |
重要
Short Fragment Buffer (SFB)
Within the Native Barcoding Kit 24 V14 (SQK-NBD114.24) and Native Barcoding Kit 96 V14 (SQK-NBD114.96), Short Fragment Buffer (SFB) is supplied at the volume needed to complete the "reverse transcription, PCR and clean-up" and "adapter ligation and clean-up" steps of the protocol.
However, extra Short Fragment Buffer (SFB) is required for the "native barcode ligation" step of the protocol. This can be purchased with our SFB Expansion (EXP-SFB001).
重要
AMPure XP Beads
Within the Native Barcoding Kits V14 (SQK-NBD114.24 and SQK-NBD114.96), AMPure XP Beads (AXP) are supplied at the volume needed to complete the native barcoding sections of the protocol: "Native barcode ligation" and "Adapter ligation and clean-up".
However, extra AMPure XP Beads are required for the "Reverse transcription, PCR and clean-up" step of the protocol.
重要
本试剂盒及实验指南中所使用的免扩增接头(NA) 不能与其它测序接头互换使用。
免扩增条形码测序试剂盒-24 V14(SQK-NBD114.24)内容物
请注意: 我们正在将试剂盒中的条形码包装更改为96孔板形式。这一改动将减少塑料浪费,并支持自动化应用。
孔板形式
名称 | 缩写 | 管盖颜色 | 管数 | 每管溶液体积 (μl) |
---|---|---|---|---|
DNA参照 | DCS | 黄色 | 2 | 35 |
免扩增接头 | NA | 绿色 | 1 | 40 |
测序缓冲液 | SB | 红色 | 1 | 700 |
文库颗粒 | LIB | 粉色 | 1 | 600 |
文库溶液 | LIS | 白色管盖,粉色标签 | 1 | 600 |
洗脱缓冲液 | EB | 黑色 | 2 | 500 |
AMPure XP 磁珠 | AXP | 透明管盖,浅青色标签 | 1 | 6,000 |
长片段缓冲液 | LFB | 橙色 | 1 | 1,800 |
短片段缓冲液 | SFB | 透明 | 1 | 1,800 |
EDTA | EDTA | 蓝色 | 1 | 700 |
测序芯片冲洗液 | FCF | 透明管盖,浅蓝色标签 | 1 | 8,000 |
测序芯片系绳 | FCT | 紫色 | 1 | 200 |
免扩增条形码孔板 | NB01-24 | - | 两板,每板三套条形码组合 | 每孔5µl |
请注意: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。
请注意: DNA参照(DCS)是一段可比对到Lambda基因组的3'端、长度为3.6 kb 的标准扩增子。
管装形式
名称 | 缩写 | 管盖颜色 | 管数 | 每管溶液体积 (μl) |
---|---|---|---|---|
免扩增条形码 | NB01-24 | 透明 | 24 (每种条形码一管) | 20 μl |
DNA参照 | DCS | 黄色 | 2 | 35 |
免扩增接头 | NA | 绿色 | 1 | 40 |
测序缓冲液 | SB | 红色 | 1 | 700 |
文库颗粒 | LIB | 粉色 | 1 | 600 |
文库溶液 | LIS | 白色管盖,粉色标签 | 1 | 600 |
洗脱缓冲液 | EB | 黑色 | 2 | 500 |
AMPure XP 磁珠 | AXP | 透明管盖,浅青色标签 | 1 | 6,000 |
长片段缓冲液 | LFB | 橙色 | 1 | 1,800 |
短片段缓冲液 | SFB | 透明 | 1 | 1,800 |
EDTA | EDTA | 蓝色 | 1 | 700 |
测序芯片冲洗液 | FCF | 透明管盖,浅蓝色标签 | 1 | 8,000 |
测序芯片系绳 | FCT | 紫色 | 1 | 200 |
请注意: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20°C 下储存(试剂稳定性将不受损害)。
请注意: DNA参照(DCS)是一段可比对到Lambda基因组的3'端、长度为3.6 kb 的标准扩增子。
免扩增条形码测序试剂盒-96 V14(SQK-NBD114.96)内容物
请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装,并减低EDTA的浓度。
管装试剂及高浓度装EDTA:
名称 | 缩写 | 管盖颜色 | 管数 | 每管溶液体积 (μl) |
---|---|---|---|---|
免扩增条形码 | NB01-96 | - | 3 盘 | 每孔 8 μl |
DNA 参照 | DCS | 黄色 | 3 | 35 |
免扩增接头 | NA | 绿色 | 2 | 40 |
测序缓冲液 | SB | 红色 | 2 | 700 |
文库颗粒 | LIB | 粉色 | 2 | 600 |
文库溶液 | LIS | 白色管盖,粉色标签 | 2 | 600 |
洗脱缓冲液 | EB | 黑色 | 1 | 1500 |
AMPure XP 磁珠 | AXP | 琥珀色 | 1 | 6000 |
长片段缓冲液 | LFB | 橙色 | 1 | 7500 |
短片段缓冲液 | SFB | 透明 | 1 | 7500 |
测序芯片冲洗液 | FCF | 蓝色 | 1 | 15500 |
测序芯片系绳 | FCT | 紫色 | 2 | 200 |
EDTA† | EDTA | 透明 | 1 | 700 |
† 较高浓度装EDTA的管盖为透明色。
瓶装试剂并减低EDTA浓度:
名称 | 缩写 | 管盖颜色 | 管数 | 每管溶液体积 (μl) |
---|---|---|---|---|
免扩增条形码 | NB01-96 | - | 3 盘 | 每孔 8 μl |
DNA 参照 | DCS | 黄色 | 3 | 35 |
免扩增接头 | NA | 绿色 | 2 | 40 |
测序缓冲液 | SB | 红色 | 2 | 700 |
文库颗粒 | LIB | 粉色 | 2 | 600 |
文库溶液 | LIS | 白色管盖,粉色标签 | 2 | 600 |
洗脱缓冲液 | EB | 黑色 | 1 | 1500 |
AMPure XP 磁珠 | AXP | 透明管盖,浅青色标签 | 1 | 6,000 |
长片段缓冲液 | LFB | 透明管盖,橙色标签 | 1 | 7,500 |
短片段缓冲液 | SFB | 透明管盖,深蓝色标签 | 1 | 7,500 |
EDTA‡ | EDTA | 蓝色 | 1 | 700 |
测序芯片冲洗液 | FCF | 透明管盖,浅蓝色标签 | 1 | 15,500 |
测序芯片系绳 | FCT | 紫色 | 2 | 200 |
‡ 较低浓度装EDTA的管盖为蓝色。
请注意: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20℃下储存(试剂稳定性将不受损害)。
条形码孔板中的条形码是按照列进行排序的。
请注意: DNA参照(DCS)是一段可比对到Lambda基因组的3'端、长度为3.6 kb 的标准扩增子。
您可考虑购买免扩增条形码扩展包(EXP-NBA114)及测序辅助扩展包(EXP-AUX003),以最大化利用免扩增条形码试剂盒。
上述扩展包旨在提供额外的建库及测序芯片预处理试剂,方便用户使用条形码测序试剂盒中剩余的少部分条形码运行测序实验。
当联用时,两扩展包内试剂可满足12次反应。如果您在此过程中需要额外的 EDTA,我们建议使用浓度为0.25M的EDTA。如果您使用不超过24种条码进行建库,则建议为每个样本添加4 µl的EDTA;如果使用25至96种条码进行建库,则建议添加2 µl。
免扩增条形码扩展包(EXP-NBA114)内容物:
请注意: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20℃储存(试剂稳定性将不受损害)。
测序辅助扩展包 V14(EXP-AUX003)内容物:
Native barcode sequences
Below is the full list of our native barcode (NB01-96) sequences. The first 24 unique barcodes are available in the Native Barcoding Kit 24 V14 (SQK-NBD114.24). The Native Barcoding Kit 96 V14 (SQK-NBD114.96) include the first 24 native barcodes, with the additional 72 unique barcodes. The native barcodes are shipped at 640 nM.
In addition to the barcodes, there are also flanking sequences which add an extra level of context during analysis.
Barcode flanking sequences:
Forward sequence: 5' - AAGGTTAA - barcode - CAGCACCT - 3' Reverse sequence: 5' - GGTGCTG - barcode - TTAACCTTAGCAAT - 3'
Native barcode sequences
Component | Forward sequence | Reverse sequence |
---|---|---|
NB01 | CACAAAGACACCGACAACTTTCTT | AAGAAAGTTGTCGGTGTCTTTGTG |
NB02 | ACAGACGACTACAAACGGAATCGA | TCGATTCCGTTTGTAGTCGTCTGT |
NB03 | CCTGGTAACTGGGACACAAGACTC | GAGTCTTGTGTCCCAGTTACCAGG |
NB04 | TAGGGAAACACGATAGAATCCGAA | TTCGGATTCTATCGTGTTTCCCTA |
NB05 | AAGGTTACACAAACCCTGGACAAG | CTTGTCCAGGGTTTGTGTAACCTT |
NB06 | GACTACTTTCTGCCTTTGCGAGAA | TTCTCGCAAAGGCAGAAAGTAGTC |
NB07 | AAGGATTCATTCCCACGGTAACAC | GTGTTACCGTGGGAATGAATCCTT |
NB08 | ACGTAACTTGGTTTGTTCCCTGAA | TTCAGGGAACAAACCAAGTTACGT |
NB09 | AACCAAGACTCGCTGTGCCTAGTT | AACTAGGCACAGCGAGTCTTGGTT |
NB10 | GAGAGGACAAAGGTTTCAACGCTT | AAGCGTTGAAACCTTTGTCCTCTC |
NB11 | TCCATTCCCTCCGATAGATGAAAC | GTTTCATCTATCGGAGGGAATGGA |
NB12 | TCCGATTCTGCTTCTTTCTACCTG | CAGGTAGAAAGAAGCAGAATCGGA |
NB13 | AGAACGACTTCCATACTCGTGTGA | TCACACGAGTATGGAAGTCGTTCT |
NB14 | AACGAGTCTCTTGGGACCCATAGA | TCTATGGGTCCCAAGAGACTCGTT |
NB15 | AGGTCTACCTCGCTAACACCACTG | CAGTGGTGTTAGCGAGGTAGACCT |
NB16 | CGTCAACTGACAGTGGTTCGTACT | AGTACGAACCACTGTCAGTTGACG |
NB17 | ACCCTCCAGGAAAGTACCTCTGAT | ATCAGAGGTACTTTCCTGGAGGGT |
NB18 | CCAAACCCAACAACCTAGATAGGC | GCCTATCTAGGTTGTTGGGTTTGG |
NB19 | GTTCCTCGTGCAGTGTCAAGAGAT | ATCTCTTGACACTGCACGAGGAAC |
NB20 | TTGCGTCCTGTTACGAGAACTCAT | ATGAGTTCTCGTAACAGGACGCAA |
NB21 | GAGCCTCTCATTGTCCGTTCTCTA | TAGAGAACGGACAATGAGAGGCTC |
NB22 | ACCACTGCCATGTATCAAAGTACG | CGTACTTTGATACATGGCAGTGGT |
NB23 | CTTACTACCCAGTGAACCTCCTCG | CGAGGAGGTTCACTGGGTAGTAAG |
NB24 | GCATAGTTCTGCATGATGGGTTAG | CTAACCCATCATGCAGAACTATGC |
NB25 | GTAAGTTGGGTATGCAACGCAATG | CATTGCGTTGCATACCCAACTTAC |
NB26 | CATACAGCGACTACGCATTCTCAT | ATGAGAATGCGTAGTCGCTGTATG |
NB27 | CGACGGTTAGATTCACCTCTTACA | TGTAAGAGGTGAATCTAACCGTCG |
NB28 | TGAAACCTAAGAAGGCACCGTATC | GATACGGTGCCTTCTTAGGTTTCA |
NB29 | CTAGACACCTTGGGTTGACAGACC | GGTCTGTCAACCCAAGGTGTCTAG |
NB30 | TCAGTGAGGATCTACTTCGACCCA | TGGGTCGAAGTAGATCCTCACTGA |
NB31 | TGCGTACAGCAATCAGTTACATTG | CAATGTAACTGATTGCTGTACGCA |
NB32 | CCAGTAGAAGTCCGACAACGTCAT | ATGACGTTGTCGGACTTCTACTGG |
NB33 | CAGACTTGGTACGGTTGGGTAACT | AGTTACCCAACCGTACCAAGTCTG |
NB34 | GGACGAAGAACTCAAGTCAAAGGC | GCCTTTGACTTGAGTTCTTCGTCC |
NB35 | CTACTTACGAAGCTGAGGGACTGC | GCAGTCCCTCAGCTTCGTAAGTAG |
NB36 | ATGTCCCAGTTAGAGGAGGAAACA | TGTTTCCTCCTCTAACTGGGACAT |
NB37 | GCTTGCGATTGATGCTTAGTATCA | TGATACTAAGCATCAATCGCAAGC |
NB38 | ACCACAGGAGGACGATACAGAGAA | TTCTCTGTATCGTCCTCCTGTGGT |
NB39 | CCACAGTGTCAACTAGAGCCTCTC | GAGAGGCTCTAGTTGACACTGTGG |
NB40 | TAGTTTGGATGACCAAGGATAGCC | GGCTATCCTTGGTCATCCAAACTA |
NB41 | GGAGTTCGTCCAGAGAAGTACACG | CGTGTACTTCTCTGGACGAACTCC |
NB42 | CTACGTGTAAGGCATACCTGCCAG | CTGGCAGGTATGCCTTACACGTAG |
NB43 | CTTTCGTTGTTGACTCGACGGTAG | CTACCGTCGAGTCAACAACGAAAG |
NB44 | AGTAGAAAGGGTTCCTTCCCACTC | GAGTGGGAAGGAACCCTTTCTACT |
NB45 | GATCCAACAGAGATGCCTTCAGTG | CACTGAAGGCATCTCTGTTGGATC |
NB46 | GCTGTGTTCCACTTCATTCTCCTG | CAGGAGAATGAAGTGGAACACAGC |
NB47 | GTGCAACTTTCCCACAGGTAGTTC | GAACTACCTGTGGGAAAGTTGCAC |
NB48 | CATCTGGAACGTGGTACACCTGTA | TACAGGTGTACCACGTTCCAGATG |
NB49 | ACTGGTGCAGCTTTGAACATCTAG | CTAGATGTTCAAAGCTGCACCAGT |
NB50 | ATGGACTTTGGTAACTTCCTGCGT | ACGCAGGAAGTTACCAAAGTCCAT |
NB51 | GTTGAATGAGCCTACTGGGTCCTC | GAGGACCCAGTAGGCTCATTCAAC |
NB52 | TGAGAGACAAGATTGTTCGTGGAC | GTCCACGAACAATCTTGTCTCTCA |
NB53 | AGATTCAGACCGTCTCATGCAAAG | CTTTGCATGAGACGGTCTGAATCT |
NB54 | CAAGAGCTTTGACTAAGGAGCATG | CATGCTCCTTAGTCAAAGCTCTTG |
NB55 | TGGAAGATGAGACCCTGATCTACG | CGTAGATCAGGGTCTCATCTTCCA |
NB56 | TCACTACTCAACAGGTGGCATGAA | TTCATGCCACCTGTTGAGTAGTGA |
NB57 | GCTAGGTCAATCTCCTTCGGAAGT | ACTTCCGAAGGAGATTGACCTAGC |
NB58 | CAGGTTACTCCTCCGTGAGTCTGA | TCAGACTCACGGAGGAGTAACCTG |
NB59 | TCAATCAAGAAGGGAAAGCAAGGT | ACCTTGCTTTCCCTTCTTGATTGA |
NB60 | CATGTTCAACCAAGGCTTCTATGG | CCATAGAAGCCTTGGTTGAACATG |
NB61 | AGAGGGTACTATGTGCCTCAGCAC | GTGCTGAGGCACATAGTACCCTCT |
NB62 | CACCCACACTTACTTCAGGACGTA | TACGTCCTGAAGTAAGTGTGGGTG |
NB63 | TTCTGAAGTTCCTGGGTCTTGAAC | GTTCAAGACCCAGGAACTTCAGAA |
NB64 | GACAGACACCGTTCATCGACTTTC | GAAAGTCGATGAACGGTGTCTGTC |
NB65 | TTCTCAGTCTTCCTCCAGACAAGG | CCTTGTCTGGAGGAAGACTGAGAA |
NB66 | CCGATCCTTGTGGCTTCTAACTTC | GAAGTTAGAAGCCACAAGGATCGG |
NB67 | GTTTGTCATACTCGTGTGCTCACC | GGTGAGCACACGAGTATGACAAAC |
NB68 | GAATCTAAGCAAACACGAAGGTGG | CCACCTTCGTGTTTGCTTAGATTC |
NB69 | TACAGTCCGAGCCTCATGTGATCT | AGATCACATGAGGCTCGGACTGTA |
NB70 | ACCGAGATCCTACGAATGGAGTGT | ACACTCCATTCGTAGGATCTCGGT |
NB71 | CCTGGGAGCATCAGGTAGTAACAG | CTGTTACTACCTGATGCTCCCAGG |
NB72 | TAGCTGACTGTCTTCCATACCGAC | GTCGGTATGGAAGACAGTCAGCTA |
NB73 | AAGAAACAGGATGACAGAACCCTC | GAGGGTTCTGTCATCCTGTTTCTT |
NB74 | TACAAGCATCCCAACACTTCCACT | AGTGGAAGTGTTGGGATGCTTGTA |
NB75 | GACCATTGTGATGAACCCTGTTGT | ACAACAGGGTTCATCACAATGGTC |
NB76 | ATGCTTGTTACATCAACCCTGGAC | GTCCAGGGTTGATGTAACAAGCAT |
NB77 | CGACCTGTTTCTCAGGGATACAAC | GTTGTATCCCTGAGAAACAGGTCG |
NB78 | AACAACCGAACCTTTGAATCAGAA | TTCTGATTCAAAGGTTCGGTTGTT |
NB79 | TCTCGGAGATAGTTCTCACTGCTG | CAGCAGTGAGAACTATCTCCGAGA |
NB80 | CGGATGAACATAGGATAGCGATTC | GAATCGCTATCCTATGTTCATCCG |
NB81 | CCTCATCTTGTGAAGTTGTTTCGG | CCGAAACAACTTCACAAGATGAGG |
NB82 | ACGGTATGTCGAGTTCCAGGACTA | TAGTCCTGGAACTCGACATACCGT |
NB83 | TGGCTTGATCTAGGTAAGGTCGAA | TTCGACCTTACCTAGATCAAGCCA |
NB84 | GTAGTGGACCTAGAACCTGTGCCA | TGGCACAGGTTCTAGGTCCACTAC |
NB85 | AACGGAGGAGTTAGTTGGATGATC | GATCATCCAACTAACTCCTCCGTT |
NB86 | AGGTGATCCCAACAAGCGTAAGTA | TACTTACGCTTGTTGGGATCACCT |
NB87 | TACATGCTCCTGTTGTTAGGGAGG | CCTCCCTAACAACAGGAGCATGTA |
NB88 | TCTTCTACTACCGATCCGAAGCAG | CTGCTTCGGATCGGTAGTAGAAGA |
NB89 | ACAGCATCAATGTTTGGCTAGTTG | CAACTAGCCAAACATTGATGCTGT |
NB90 | GATGTAGAGGGTACGGTTTGAGGC | GCCTCAAACCGTACCCTCTACATC |
NB91 | GGCTCCATAGGAACTCACGCTACT | AGTAGCGTGAGTTCCTATGGAGCC |
NB92 | TTGTGAGTGGAAAGATACAGGACC | GGTCCTGTATCTTTCCACTCACAA |
NB93 | AGTTTCCATCACTTCAGACTTGGG | CCCAAGTCTGAAGTGATGGAAACT |
NB94 | GATTGTCCTCAAACTGCCACCTAC | GTAGGTGGCAGTTTGAGGACAATC |
NB95 | CCTGTCTGGAAGAAGAATGGACTT | AAGTCCATTCTTCTTCCAGACAGG |
NB96 | CTGAACGGTCATAGAGTCCACCAT | ATGGTGGACTCTATGACCGTTCAG |
3. 计算机要求及软件 (1)
MinION Mk1B的IT配置要求
请为MinION Mk1B配备一台高规格的计算机或笔记本电脑,以适配数据采集的速度。您可以在MinION Mk1B的IT配置要求文件中了解更多。
MinION Mk1C的IT配置要求
MinION Mk1C是一款集计算功能和触控屏幕于一体的便携式测序分析仪,它无需依赖任何额外设备,即可生成并分析纳米孔测序数据。您可以在 MinION Mk1C的IT配置要求文件中了解更多。
Software for nanopore sequencing
MinKNOW
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
EPI2ME (optional)
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.
测序芯片质检
我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片12周之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :
测序芯片 | 芯片上的活性孔数确保不少于 |
---|---|
Flongle 测序芯片 | 50 |
MinION/GridION 测序芯片 | 800 |
PromethION 测序芯片 | 5000 |
** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。
4. Reverse transcription, PCR and clean-up
材料
- Input influenza RNA
- Influenza A primers
- Influenza B primers
耗材
- SuperScript III One-Step RT-PCR System with Platinum Taq DNA Polymerase (ThermoFisher, cat # 12574018 or 12574026)
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Cat # 0030129504) with heat seals
- 1.5 ml Eppendorf DNA LoBind 离心管
- 5 ml Eppendorf DNA LoBind tubes
- 15 ml Eppendorf DNA LoBind tubes
- Agencourt AMPure XP beads (Beckman Coulter, A63881)
- 新制备的80%乙醇(用无核酸酶水配制)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
- Qubit™ 分析管(Invitrogen, Q32856)
仪器
- 热循环仪
- Qubit荧光计(或用于质控检测的等效仪器)
- Multichannel pipettes suitable for dispensing 20–200 μl, and tips
- P1000移液枪和枪头
- P200 移液枪和枪头
- P100移液枪和枪头
- P20 pipette and tips
- P10 移液枪和枪头
- P2 移液枪和枪头
- Magnetic rack suitable for 96 well plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher CAT#12027)
- 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
- 迷你离心机
可选仪器
- PCR hoods with UV steriliser
- PCR-Cooler (Eppendorf) or ice bucket with ice
重要
Keep the RNA sample on ice as much as possible to prevent nucleolytic degradation, which may affect sensitivity.
To reduce risk of contamination, we recommend the use of PCR hoods with a UV steriliser when setting up the PCR plates.
- When handling the primer stocks and derivatives, use a clean template-free PCR hood.
- When handling the samples and/or a positive control, use a clean template-addition PCR hood.
In a clean template-free pre-PCR hood, prepare the primer mixes for influenza A and influenza B as follows in 1.5 ml Eppendorf DNA LoBind tubes:
Note: The volume requirements can be adjusted according to stock concentrations and experiment needs.
Influenza A primer mix
Primer | Concentration | Volume |
---|---|---|
Nuclease-free water | - | 378 µl |
Tuni 12 | 100 µM | 16.8 µl |
Tuni 12.4 | 100 µM | 4.2 µl |
Tuni 13 | 100 µM | 21 µl |
Total | 420 µl |
Influenza B primer mix
Primer | Concentration | Volume |
---|---|---|
Nuclease-free water | - | 378 µl |
B-PBs-UniF | 100 µM | 5 µl |
B-PBs-UniR | 100 µM | 5 µl |
B-PA-UniF | 100 µM | 2.5 µl |
B-PA-UniR | 100 µM | 2.5 µl |
B-HANA-UniF | 100 µM | 5 µl |
B-HANA-UniR | 100 µM | 5 µl |
B-NP-UniF | 100 µM | 3 µl |
B-NP-UniR | 100 µM | 3 µl |
B-M-Uni3F | 100 µM | 1.5 µl |
B-Mg-Uni3F | 100 µM | 1.5 µl |
B-M-Uni3R | 100 µM | 3 µl |
B-NS-Uni3F | 100 µM | 2.5 µl |
B-NS-Uni3R | 100 µM | 2.5 µl |
Total | 420 µl |
In the template-free pre-PCR hood, prepare the following master mixes in Eppendorf DNA LoBind tubes and mix thoroughly as follows:
For X12 samples, use 1.5 ml Eppendorf DNA LoBind tubes:
Component | Influenza A RT-PCR Master Mix | Influenza B RT-PCR Master Mix |
---|---|---|
Nuclease free water | 280 µl | 280 µl |
Influenza A primer mix | 28 µl | - |
Influenza B primer mix | - | 28 µl |
2X Reaction Mix | 350 µl | 350 µl |
SuperScript™ III RT/Platinum™ Taq Mix | 28 µl | 28 µl |
Total volume | 686 µl | 686 µl |
For X24 samples, use 1.5 ml Eppendorf DNA LoBind tubes:
Component | Influenza A RT-PCR Master Mix | Influenza B RT-PCR Master Mix |
---|---|---|
Nuclease free water | 560 µl | 560 µl |
Influenza A primer mix | 56 µl | - |
Influenza B primer mix | - | 56 µl |
2X Reaction Mix | 700 µl | 700 µl |
SuperScript™ III RT/Platinum™ Taq Mix | 56 µl | 56 µl |
Total volume | 1372 µl | 1372 µl |
For X48 samples, use 5 ml Eppendorf DNA LoBind tubes:
Component | Influenza A RT-PCR Master Mix | Influenza B RT-PCR Master Mix |
---|---|---|
Nuclease free water | 1120 µl | 1120 µl |
Influenza A primer mix | 112 µl | - |
Influenza B primer mix | - | 112 µl |
2X Reaction Mix | 1400 µl | 1400 µl |
SuperScript™ III RT/Platinum™ Taq Mix | 112 µl | 112 µl |
Total volume | 2744 µl | 2744 µl |
For X96 samples, use 15 ml Eppendorf DNA LoBind tubes:
Component | Influenza A RT-PCR Master Mix | Influenza B RT-PCR Master Mix |
---|---|---|
Nuclease free water | 2240 µl | 2240 µl |
Influenza A primer mix | 224 µl | - |
Influenza B primer mix | - | 224 µl |
2X Reaction Mix | 2800 µl | 2800 µl |
SuperScript™ III RT/Platinum™ Taq Mix | 224 µl | 224 µl |
Total volume | 5488 µl | 5488 µl |
For each influenza type, place a clean 96-well RT-PCR plate into a PCR-cooler or ice bucket with ice (if using).
Note: Enusre the RT-PCR plates for each influenza type are separate:
- One plate for Influenza A (Influenza A RT-PCR plate)
- One plate for Influenza B (Influenza B RT-PCR plate)
Using a stepper pipette or a multichannel pipette, aliquot 49 µl of influenza A RT-PCR Master Mix into the influenza A RT-PCR plate.
Using a stepper pipette or a multichannel pipette, aliquot 49 µl of influenza B RT-PCR Master Mix into the influenza B RT-PCR plate.
重要
We recommend having a negative control for every plate of samples to monitor for contamination events.
Use 1 µl of nuclease-free water as your negative control input into a single well of each Influenza RT-PCR plate.
Seal the RT-PCR plate(s) and transfer to a template-addition pre-PCR hood.
Transfer 1 µl of influenza A samples to the wells containing influenza A RT-PCR Master Mix in the influenza A RT-PCR plate and mix thoroughly by pipetting the contents of each well up and down.
Transfer 1 µl of influenza B samples to the wells containing influenza B RT-PCR Master Mix in the influenza B RT-PCR plate and mix thoroughly by pipetting the contents of each well up and down.
Seal the RT-PCR plate(s) and spin down in a centrifuge.
重要
Please note the thermal cycler programs are different for the Influenza A RT-PCR and Influenza B RT-PCR reactions.
Ensure you are using the correct program for your reaction plate.
Incubate the influenza A RT-PCR plate using the following program, with the heated lid set to 105°C:
Step | Temperature | Time | Cycles |
---|---|---|---|
cDNA synthesis | 42°C | 60 min | 1 |
Initial denaturation | 94°C | 2 min | 1 |
Denaturation Annealing and extension | 94°C 45°C 68°C | 30 sec 30 sec 3 min | 5 |
Denaturation Annealing and extension | 94°C 57°C 68°C | 30 sec 30 sec 3 min | 31 |
Hold | 4°C | ∞ |
Incubate the influenza B RT-PCR plate using the following program, with the heated lid set to 105°C:
Step | Temperature | Time | Cycles |
---|---|---|---|
cDNA synthesis | 45°C | 60 min | 1 |
cDNA synthesis | 55°C | 30 min | 1 |
Initial denaturation | 94°C | 2 min | 1 |
Denaturation Annealing and extension | 94°C 40°C 68°C | 20 sec 30 sec 3 min 30 sec | 5 |
Denaturation Annealing and extension | 94°C 58°C 68°C | 20 sec 30 sec 3 min 30 sec | 30 |
Final extension | 68°C | 10 min | 1 |
Hold | 4°C | ∞ |
可选操作
If necessary, the protocol can be paused at this point. The samples should be kept at 4°C and can be stored overnight.
重要
From this point onwards, a clean post-PCR hood can be used if available. Decontamination with UV and or DNAzap between sample batches is recommended.
Resuspend the AMPure XP beads by vortexing.
Add 50 µl of resuspended AMPure XP beads to each well of the RT-PCR plate(s) and mix by gently pipetting.
Incubate the PT-PCR plate(s) at room temperature for 10 minutes.
Prepare at least 500 µl 80% ethanol in nuclease-free water per sample.
Spin down the RT-PCR plate(s) and pellet the beads on a magnet for 5 minutes. Keep the plate on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Keep the plate on the magnet and wash the beads in each well with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
Repeat the previous step.
Spin down and place the plate back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the plate from the magnetic rack and resuspend each pellet in 15 µl nuclease-free water. Incubate for 2 minutes at room temperature.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 15 µl of eluate containing the DNA per well, into a clean 96-well plate(s).
Dispose of the pelleted beads.
CHECKPOINT
Quantify 1 µl of each eluted sample using a Qubit fluorometer.
步骤结束
Take forward your quantified samples to the end-prep step.
However, at this point it is also possible to store the samples at 4°C overnight.
For long-term storage or to store any unused amplified material for use in later experiments, store your samples at -20°C.
5. End-prep
耗材
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- NEBNext® Ultra™ II End Repair/dA-Tailing Module (E7546)
- 1.5 ml Eppendorf DNA LoBind 离心管
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Cat # 0030129504) with heat seals
仪器
- Multichannel pipette capable of dispensing 0.5 – 10 µL, and tips
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 pipette and tips
- P20 移液枪和枪头
- P10 移液枪和枪头
- 热循环仪
- 迷你离心机
- 盛有冰的冰桶
- 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
- Vortex mixer
重要
We recommended carrying the negative control through this step until sequencing.
Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:
For optimal performance, NEB recommend the following:
Thaw all reagents on ice.
Ensure the reagents are well mixed.
Note: Do not vortex the Ultra II End Prep Enzyme Mix.Always spin down tubes before opening for the first time each day.
The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.
Determine the volume of the cleaned-up PCR reaction that yields 200 fmol of DNA per sample and aliquot into a clean 96-well plate (End-prep plate).
Make up each sample per well to 12.5 µl using nuclease-free water.
Prepare the following end-prep master mix in 1.5 ml Eppendorf DNA LoBind tube and mix thoroughly by pipetting:
Reagent | Volume per reaction | For X24 samples | For X48 samples | For X96 samples |
---|---|---|---|---|
Ultra II End-prep reaction buffer | 1.75 µl | 52.5 µl | 105 µl | 210 µl |
Ultra II End-prep enzyme mix | 0.75 µl | 22.5 µl | 45 µl | 90 µl |
Total | 2.5 µl | 75 µl | 150 µl | 300 µl |
Using a stepper pipette or multi-channel pipette, add 2.5 µl of the end-prep master mix to each well containing 12.5 µl sample.
Ensure the reactions are thoroughly mixed by pipetting. Seal the End-prep plate and spin down briefly.
Using a thermal cycler, incubate the plate at 20°C for 5 minutes and 65°C for 5 minutes.
步骤结束
Take forward the end-prepped DNA into the native barcode ligation step.
If users want to pause the library preparation here, we recommend cleaning up your sample with 1X Agencourt AMPure XP beads and eluting in nuclease-free water before storing at 4°C.
6. Native barcode ligation
材料
- Native Barcodes (NB01-24) OR Native Barcodes (NB01-NB96)
- AMPure XP 磁珠(AXP)
- EDTA(EDTA)
- 短片段缓冲液(SFB)
耗材
- 新制备的80%乙醇(用无核酸酶水配制)
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
- NEB Blunt/TA 连接酶预混液(NEB,M0367)
仪器
- Magnetic rack suitable for 96-well plates
- 热循环仪
- Hula混匀仪(低速旋转式混匀仪)
- 涡旋混匀仪
- 盛有冰的冰桶
- 迷你离心机
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P10 移液枪和枪头
可选仪器
- Qubit荧光计 (或用于质控检测的等效仪器)
重要
To monitor cross-contamination events, we recommend that the negative control is carried through this process and a barcode is used to sequence this control.
根据生产厂家的说明准备NEB Blunt/TA 连接酶预混液,并置于冰上:
于室温下解冻试剂。
瞬时离心试剂管5秒。
上下吹打整管试剂10次,以确保充分混匀。
Thaw kit components at room temperature, then spin down briefly using a microfuge and mix as indicated by the table below. Then place on ice:
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix by pipetting or vortexing | 4. Place on ice |
---|---|---|---|---|
EDTA (EDTA) | ✓ | ✓ | Vortexing | ✓ |
Native Barcodes (NB01-24) or (NB01-96) | ✓ | ✓ | Only pipette mix immediately before use | ✓ |
Short Fragment Buffer (SFB) | ✓ | ✓ | Vortexing | ✓ |
Select a unique barcode for each sample to be run together on the same flow cell.
Please note: Only use one barcode per sample.
Using a stepper pipette, or a multichannel pipette, make up the Native Barcode Ligation Plate in a clean 96-well plate. Add the reagents in the following order per well:
Reagent | Volume per well for up to x24 samples | Volume per well for x25—x96 samples |
---|---|---|
Nuclease-free water | 6 µl | 3 µl |
End-prepped DNA Note: Transfer to the corresponding well | 1.5 µl | 0.75 µl |
Native barcode Note: Transfer to the corresponding well | 2.5 µl | 1.25 µl |
Blunt/TA Ligation Master Mix | 10 µl | 5 µl |
Total | 20 µl | 10 µl |
Depending on the number of samples, aliquot to each well of the columns:
Plate location | x24 samples | x48 samples | x96 samples |
---|---|---|---|
Columns | 1-3 | 1-6 | 1-12 |
Mix the contents thoroughly by pipetting.
Seal the plate(s) and spin down briefly.
Incubate for 20 minutes at room temperature.
Add EDTA to each well and mix thoroughly by pipetting and spin down briefly.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
Up to x24 samples | x25 — x96 samples | |
---|---|---|
Volume of clear capped EDTA per sample | 2 µl | 1 µl |
Volume of blue capped EDTA per sample | 4 µl | 2 µl |
提示
在此步骤中添加EDTA的目的是终止反应。
Pool the barcoded samples in a clean 1.5 ml Eppendorf DNA LoBind tube:
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
x24 samples | x48 samples | x96 samples | |
---|---|---|---|
Total volume for preps using clear cap EDTA | ~528 µl | ~528 µl | ~1,056 µl |
Total volume for preps using blue cap EDTA | ~576 µl | ~576 µl | ~1,152 µl |
提示
我们建议您在合并各带条码样本前后均查看各PCR管/板孔内液体体积是否相同,确保已将所有液体转移至离心管内。
Resuspend the AMPure XP Beads (AXP) by vortexing.
Add AMPure XP Beads (AXP) to the pooled reaction, and mix by pipetting for a 0.4X clean.
Volume for 10 µl of sample | For 265 µl of samples | For 528 µl of samples | For 1,056 µl of samples | |
---|---|---|---|---|
Volume of AXP | 4 µl | 106 µl | 211 µl | 422 µl |
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Prepare 500 µl of fresh 80% ethanol in nuclease-free water.
Spin down the sample and pellet the beads on a magnet for 5 minutes. Keep the tube on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Wash the beads by adding 700 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
重复上述步骤。
Keep the tube on the magnet and wash the beads with 100 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
将离心管从磁力架上移开。将磁珠重悬于35µl的无核酸酶水中,轻弹离心管混匀。
Incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.
Note: If stuggling to obtain the necessary yield, increasing the incubation period up to 30 minutes may improve elution efficacy.
将离心管静置于磁力架上,直到磁珠和液相分离,且洗脱液澄清无色。
Remove and retain 35 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Quantify 1 µl of eluted sample using a Qubit fluorometer.
步骤结束
Take forward the barcoded DNA library to the adapter ligation and clean-up step. However, at this point it is also possible to store the sample at 4°C overnight.
7. Adapter ligation and clean-up
材料
- 短片段缓冲液(SFB)
- 洗脱缓冲液(EB)
- 免扩增接头(NA)
- AMPure XP 磁珠(AXP)
耗材
- NEBNext®快速连接模块(NEB,E6056)
- 1.5 ml Eppendorf DNA LoBind 离心管
- Qubit™ 分析管(Invitrogen, Q32856)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
仪器
- 迷你离心机
- 磁力架
- 涡旋混匀仪
- Hula混匀仪(低速旋转式混匀仪)
- 热循环仪
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- 盛有冰的冰桶
- Qubit荧光计(或用于质控检测的等效仪器)
重要
本试剂盒及实验指南中所使用的免扩增接头(NA) 不能与其它测序接头互换使用。
根据生产厂家的说明准备NEBNext 快速连接反应模块,并置于冰上:
于室温下解冻试剂。
瞬时离心试剂管5秒。
下吹打全部体积的试剂10次,以确保充分混匀。 注意: 请勿涡旋振荡快速T4 DNA连接酶。
NEBNext快速连接反应缓冲液(5x)内可能存在少量沉淀。请待该缓冲液回复至室温后,吹打数次使沉淀溶解,再涡旋振荡数秒以充分混匀。
重要
请勿涡旋振荡快速T4 DNA连接酶。
将免扩增接头(NA)和T4连接酶瞬时离心后吹打混匀,然后置于冰上。
将洗脱缓冲液(EB)于室温下解冻,涡旋振荡混匀后,再瞬时离心,置于冰上。
Thaw the Short Fragment Buffer (SFB) at room temperature and mix by vortexing. Then spin down and place on ice.
在一支1.5ml Eppendorf LoBind离心管内,将所有试剂按以下顺序混合:
每添加一样试剂后,请吹打混匀10-20次,再添加下一样试剂。
试剂 | 体积 |
---|---|
混合后的含条码样本 | 30 µl |
免扩增接头(NA) | 5 µl |
NEBNext快速连接反应缓冲液(5X) | 10 µl |
NEBNext快速T4 DNA连接酶 | 5 µl |
总体积 | 50 µl |
轻轻吹打以充分混匀,并瞬时离心。
室温下孵育20分钟。
重要
The next clean-up step uses Short Fragment Buffer (SFB) and not 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.
涡旋振荡以重悬AMPure XP磁珠。
将20µl重悬的AMPure XP磁珠加入反应体系中,吹打混匀。
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育10分钟。
Spin down the sample and pellet the beads on a magnet for 5 minutes. Keep the tube on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Wash the beads by adding 125 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, then return the tube to the magnetic rack and allow the beads to pellet. Keep the tube on the magnet until the eluate is clear and colourless. Remove the supernatant using a pipette and discard.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的上清液。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
将离心管从磁力架上移开。将磁珠重悬于15µl洗脱缓冲液中(EB)。
瞬时离心,然后在37℃下孵育10分钟。请每两分钟轻弹离心管10秒以搅动样本,促进DNA洗脱。
将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。
将此15µl洗脱液转移至一支新的1.5ml Eppendorf DNA LoBind管中。
丢弃磁珠
CHECKPOINT
取1µl洗脱样品,用Qubit荧光计定量。
Depending on your DNA library fragment size, prepare your final library in 12 µl of Elution Buffer (EB).
Fragment library length | Flow cell loading amount |
---|---|
Very short (<1 kb) | 100 fmol |
Short (1-10 kb) | 35–50 fmol |
Long (>10 kb) | 300 ng |
Note: If the library yields are below the input recommendations, load the entire library.
If required, we recommend using a mass to mol calculator such as the NEB calculator.
步骤结束
构建好的文库即可用于测序芯片上样。在上样前,请将文库置于冰上。
提示
文库保存建议
若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。
可选操作
如DNA文库量足够,您可选择使用洗脱缓冲液(EB)稀释文库,再拆分上样至多张测序芯片。
根据测序芯片的数目,洗脱缓冲液的实际需求量可能会高于本试剂盒中该缓冲液的供应量。
8. Priming and loading the SpotON flow cell
材料
- 测序芯片冲洗液(FCF)
- 测序芯片系绳(FCT)
- 文库溶液(LIS)
- 文库颗粒(LIB)
- 测序缓冲液(SB)
耗材
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
- (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
仪器
- MinION 或 GridION 测序仪
- SpotON Flow Cell
- MinION 及GridION 测序芯片遮光片
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
重要
请注意:本试剂盒仅兼容R10.4.1测序芯片(FLO-MIN114)。
使用文库溶液
对大多数测序实验,我们建议您使用文库颗粒(LIB)给测序芯片上样。然而,对于粘稠的文库,借助文库颗粒上样可能会比较困难,此时使用文库溶液(LIS)可能更为合适。
于室温下解冻测序缓冲液(SB)、文库颗粒(LIB)或文库溶液(LIS)、测序芯片系绳(FCT)和一管测序芯片冲洗液(FCF)。完全解冻后,涡旋振荡混匀,然后瞬时离心并置于冰上。
重要
为在MinION及GridION R10.4.1测序芯片(FLO-MIN114)上获得最优的测序表现并提高测序产出,我们推荐您向测序芯片预处理液中加入终浓度为0.2 mg/ml的牛血清白蛋白(BSA)。
请注意: 我们不推荐使用其它类型的白蛋白(例如重组人血清白蛋白)。
按下表制备测序芯片的预处理液,室温下吹打混匀。
请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装。请按照与您所用试剂盒包装相对应的说明操作。
单次使用管装: 向一整管测序芯片冲洗液(FCF)中加入5µl 50mg/ml的牛血清白蛋白(BSA)及 30µl 测序芯片系绳(FCT)。
瓶装: 请另拿一支适当体积的离心管制备测序芯片预处理液:
试剂 | 体积(每张芯片) |
---|---|
测序芯片冲洗液 (FCF) | 1,170 µl |
50mg/ml的牛血清白蛋白 (BSA) | 5 µl |
测序芯片系绳 (FCT) | 30 µl |
总体积 | 1,205 µl |
打开MinION或GridION测序仪的盖子,将测序芯片插入金属固定夹的下方。用力向下按压芯片,以确保正确的热、电接触。
顺时针转动预处理孔孔盖,使预处理孔显露出来。
重要
从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。
将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:
- 将P1000移液枪转至200µl刻度。
- 将枪头垂直插入预处理孔中。
- 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
__请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。
通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。
将含有文库颗粒的LIB管用移液枪吹打混匀。
重要
LIB管内的文库颗粒分散于悬浮液中。由于颗粒沉降速度非常快,因此请在混匀颗粒后立即使用。
对于大多数测序实验,我们建议您使用文库颗粒(LIB)。但如文库较为粘稠,您可考虑使用文库溶液(LIS)。
在一支新的1.5ml Eppendorf LoBind离心管中,按下表所示准备上样文库:
试剂 | 体积(每张测序芯片) |
---|---|
测序缓冲液(SB) | 37.5 µl |
文库颗粒(LIB),使用前即时混匀;或文库溶液(LIS) | 25.5 µl |
DNA文库 | 12 µl |
总体积 | 75 µl |
完成测序芯片的预处理:
- 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。
- 通过预处理孔(而 非 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。
临上样前,用移液枪轻轻吹打混匀制备好的文库。
通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。
轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。
重要
为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。
我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。
按下述步骤安装测序芯片遮光片:
小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。
将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。
注意
MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。
步骤结束
小心合上测序设备上盖并在MinKNOW上设置测序实验。
9. Data acquisition and basecalling
纳米孔数据分析概览
有关纳米孔数据分析的完整概述,包括碱基识别和次级分析,请参阅 数据分析 文档。
重要
Required settings in MinKNOW
The correct barcoding parameters must be set up on MinKNOW prior to the sequencing run. During the run setup, in the Analysis tab, enable Barcoding. Click Edit options and enable Barcode both ends and Mid-read barcodes. Optional: basecalling and/or demultiplexing of sequences can be performed using the stand-alone Guppy software.
如何开始测序
MinKNOW软件负责仪器控制,数据采集和实时碱基识别。如您已在计算机上安装MinKNOW,则可选择以下几种途径开展测序:
1. 使用计算机上的MinKNOW进行实时数据采集和碱基识别
请按照 MinKNOW 实验指南 的说明:从“开始测序”部分起,到“MinKNOW运行结束”部分止。
2. 使用GridION进行实时数据采集和碱基识别
请参照 GridION 用户手册 中的说明。
3. 使用MinION Mk1C测序仪进行实时数据采集和碱基识别
请参照 MinION Mk1C 使用指南中的说明。
4. 使用PromethION测序仪进行实时数据采集和碱基识别
请参照 PromethION 使用指南 或 PromethION 2 Solo 使用指南中的说明。
5. 使用计算机上的MinKNOW进行数据采集,过后再用NinKNOW进行线下碱基识别
请按照 MinKNOW 实验指南 中的说明:从“开始测序”部分起,到“MinKNOW运行结束”部分止。 当您设置实验参数时,请将 碱基识别 选项设为“关”。 测序实验结束后,请按照 MinKNOW 实验指南的本地分析 部分操作。
10. Downstream analysis
Recommended analysis pipeline
The analysis of the FASTQ format sequence data is performed using a Nextflow workflow called Influenza Typing Workflow (wf-flu). The use of the Nextflow software has been integrated into the EPI2ME Labs software that we recommend for running our downstream analysis methods.
Alternative methods for downstream analysis are available using your device terminal or command line, however we only suggest this for experienced users.
The workflow processes the basecalled and demultiplexed DNA sequence data output generated by MinKNOW:
- The sequences are filtered for a minimum length and quality thresholds (200 nucleotides and Q9 respectively) prior to sequence alignment to the CDC multi-fasta Influenza reference.
- The alignment is performed using the Minimap2 software.
- Depth of coverage across the mapped sequences is measured using Samtools before genetic variants are called using Medaka.
- A coverage-masked consensus sequence is prepared for each sample using bcftools.
- The influenza strain typing is then performed using the abricate software with an insaflu database.
The influenza strains included in the database are listed in the project documentation pages for the Influenza Typing Workflow.
The workflow returns a per-run HTML-format summary report along with a CSV file of typing results. Additional files that include mapping BAM files and VCF files of Medaka variants are also included in the workflow output.
For more information, please refer to the Influenza workflow blog.
Software set-up and installation
The EPI2ME application provides a clean interface to accessing bioinformatics workflows, and is our recommended method in performing your post-sequencing analysis.
Follow the instructions in the EPI2ME Installation guide to install the application on your device.
For more information on how to use EPI2ME, refer to the EPI2ME Quick Start guide.
Installing and updating the wf-flu workflow in EPI2ME Labs:
Ensure you have installed the wf-flu workflow prior to the first analysis set-up.
In the EPI2ME Labs home page, scroll down to the "Install workflows" section and click on epi2me-labs/wf-flu:
If you have already installed the wf-flu workflow, ensure you are using the latest version.
Updating the workflow can be done directly through EPI2ME Labs by navigating to the wf-flu workflow page and clicking Update Workflow:
Demultiplexing of multiple barcoded samples
The wf-flu analysis requires FASTQ sequence data that has already been demultiplexed.
Reads will be demultiplexed during sequencing if you are following the recommended "Required settings in MinKNOW". However, demultiplexing can also be done post-sequencing using the MinKNOW software.
For more information and guides on demultiplexing using MinKNOW, refer to the "Post-run analysis" section in our MinKNOW Protocol.
The expected input for wf-flu is a folder of folders as shown below. Each of the barcode folders should contain the FASTQ sequence data and files may either be uncompressed or gzipped.
$ tree -d FluFastq/
FluFastq/
├── barcode01
├── barcode02
├── barcode03
├── barcode04
├── barcode05
├── barcode06
└── unclassified
重要
Basecalling model
The basecalling model should be specified when setting up the wf-flu analysis. This should reflect the basecalling model selected during your run set-up as follows:
- If using the default model, High-accuracy basecalling (HAC): r1041_e82_400bps_hac_variant_g615
- If you have used Super accurate basecalling (SUP), please use: r1041_e82_400bps_sup_variant_g615
- If you have used FAST basecalling, please use: r1041_e82_400bps_fast_variant_g615
Running a Flu analysis using EPI2ME Labs
Open the EPI2ME Labs application on your device.
Open the "Workflows" tab in the EPI2ME Labs application and click on the "wf-flu" workflow:
In the "wf-flu" workflow page, select "Run this workflow" to open analysis set-up:
Complete the wf-flu run set-up:
Select your data input file location. Please note, this folder must contain the demultiplexed FASTQ files of your sequencing run.
Set the basecaller cgf to the basecalling model used in your sequencing run.
Expand the Extra configuration tab and set the Run name for your wf-flu analysis.
Click Launch workflow at the bottom of the page to begin your analysis.
Completed analysis and result files
The wf-flu analysis outputs will be written to the Working Directory folder specified in the EPI2ME Labs Settings tab.
The location of this folder is specified in the wf-flu run Instance parameters preceeded by out_dir
.
However, these files can also be accessed directly in the EPI2ME Labs application from the completed analysis page for your run:
Housekeeping and disk usage
The "Working Directory" can be specified in the EPI2ME Labs "Settings" tab and defines where the workflow intermediate files and outputs are stored.
This folder will accumulate a significant number of files that correspond to raw BAM files, other larger intermediates and analysis results files. We recommend this folder to be routinely cleared.
11. 测序芯片的重复利用及回收
材料
- 测序芯片清洗剂盒(EXP-WSH004)
完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于2-8℃保存。
您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南。
提示
我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。
请按照“回收程序”清洗好芯片,以便送回Oxford Nanopore。
您可在 此处找到回收测序芯片的说明。
请注意: 在将测序芯片寄回之前,请使用去离子水对每张芯片进行冲洗。
重要
如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。
12. 在DNA/RNA提取和使用Kit 14建库过程中可能出现的问题
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
低质量样本
现象 | 可能原因 | 措施及备注 |
---|---|---|
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) | 用户所使用的DNA提取方法未能达到所需纯度 | 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法。 请考虑将样品再次用磁珠纯化。 |
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。 |
RNA的片段长度短于预期 | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。 我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染. |
经AMPure磁珠纯化后的DNA回收率低
现象 | 可能原因 | 措施及备注 |
---|---|---|
低回收率 | AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 | 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。 2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。 |
低回收率 | DNA片段短于预期 | AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 |
末端修复后的DNA回收率低 | 清洗步骤所用乙醇的浓度低于70% | 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。 |
13. Kit 14 测序过程中可能出现的问题
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 纳米孔阵列中引入了气泡 | 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。 |
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 测序芯片没有正确插入测序仪 | 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。 |
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 文库中残留的污染物对纳米孔造成损害或堵塞 | 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。 如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法 。 |
MinKNOW脚本失败
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示 "Script failed”(脚本失败) | 重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。 |
纳米孔利用率低于40%
现象 | 可能原因 | 措施及备注 |
---|---|---|
纳米孔利用率<40% | 测序芯片中的文库量不足 | 向MinION/GridION测序芯片中加入10–20 fmol的优质文库。请在上样前对文库进行定量,并使用 Promega Biomath Calculator 等工具中的“ dsDNA:µg to pmol”功能来计算DNA分子的摩尔量。 |
纳米孔利用率接近0 | 尽管您使用了免扩增条形码测序试剂盒,但在接头连接后的纯化步骤中,您并未使用LFB或SFB洗涤,而是选用了酒精。 | 酒精可导致测序接头上的马达蛋白变性。请确保在测序接头连接后使用LFB或SFB。 |
纳米孔利用率接近0 | 测序芯片中无系绳 | 系绳(FCT管)随预处理液加入芯片。因此在制备预处理液时,请确保将FCT加入测序芯片冲洗液(FCF)中。 |
读长短于预期
现象 | 可能原因 | 措施及备注 |
---|---|---|
读长短于预期 | DNA样本降解 | 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。 1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。 2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。 在上图中,样本1为高分子量DNA,而样本2为降解样本。 3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。 |
大量纳米孔处于不可用状态
现象 | 可能原因 | Comments and actions |
---|---|---|
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示) 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。 | 样本中含有污染物 | 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加: 1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或 2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。 |
大量纳米孔处于失活状态
现象 | 可能原因 | 措施及备注 |
---|---|---|
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) | 测序芯片中引入了气泡 | 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。 |
大量纳米孔处于失活/不可用状态 | 文库中存在与DNA共纯化的化合物 | 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。 1. 请参考 植物叶片DNA提取方法。 2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。 3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。 |
大量纳米孔处于失活/不可用状态 | 样本中含有污染物 | 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。 |
运行过程中过孔速度和数据质量(Q值)降低
现象 | 可能原因 | 措施及备注 |
---|---|---|
运行过程中过孔速度和数据质量(Q值)降低 | 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 | 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。 |
温度波动
现象 | 可能原因 | 措施及备注 |
---|---|---|
温度波动 | 测序芯片和仪器接触不良 | 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。 |
未能达到目标温度
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示“未能达到目标温度” | 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) | MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION MK1B温度控制的更多信息,请参考此 FAQ (常见问题)文档。 |