cDNA-PCR sequencing - sequence-specific (SQK-PCS111)

Descripción general

The fastest and simplest protocol for targeted cDNA sequencing

  • Higher yields than traditional cDNA synthesis
  • Splice variants and fusion transcripts
  • Compatible with R9.4.1 flow cells

For Research Use Only

This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.

Document version: CPSS_9185_v111_revD_19Apr2023

1. Overview of the protocol

IMPORTANTE

This is a Legacy product

This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.

cDNA-PCR Sequencing Kit features

This kit is highly recommended for users who:

  • Would like to identify and quantify full-length transcripts
  • Are looking for a faster and simpler method for cDNA synthesis: ~210 minutes library prep + variable time for PCR
  • Want to explore isoforms, splice variants and fusion transcripts using full-length cDNAs
  • Wish to start from total RNA or have a low starting amount of RNA
  • Would like to generate high amounts of cDNA data

Introduction to cDNA-PCR protocol

This protocol outlines a targeted cDNA sequencing method using the cDNA-PCR Sequencing Kit (SQK-PCS111) and a user-defined sequence-specific primer. You can swap out the cDNA RT Adapter (CRTA) and design your own primer to target a specific RNA sequence during reverse transcription. During the strand-switching step, a UMI is incorporated before the double-stranded cDNA is amplified by PCR using primers containing rapid attachment chemistry. The rapid sequencing adapters are then added to the amplified sample.

Steps in the sequencing workflow:

Prepare for your experiment You will need to:

  • Extract your RNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents.
  • Download the software for acquiring and analysing your data.
  • Check your flow cell to ensure it has enough pores for a good sequencing run.

**Library preparation** You will need to:
  • Perform reverse transcription with sequence-specific primer.
  • Using the strand-switching protocol, prepare full-length cDNAs from your RNA sample.
  • Amplify the samples by PCR, adding rapid attachment primers during the PCR step.
  • Ligate sequencing adapters to the PCR products.
  • Prime the flow cell, and load your cDNA library into the flow cell.

SQK PCS111 seq specific workflow v1

Sequencing and analysis You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and will basecall the reads.
  • (Optional) Start the EPI2ME software and select a workflow for further analysis, e.g. metagenomic analysis or drug resistance mapping
IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

  • cDNA-PCR Sequencing Kit (SQK-PCS111)
  • R9.4.1 flow cells (FLO-MIN106)
  • Flow Cell Wash Kit (EXP-WSH004)

2. Equipment and consumables

Material
  • 4 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 200 ng total RNA
  • cDNA-PCR Sequencing Kit (SQK-PCS111)
  • Custom-ordered sequence-specific primer

Consumibles
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Freshly prepared 70% ethanol in nuclease-free water
  • 10 mM dNTP solution (e.g. NEB N0447)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
  • RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
  • Exonuclease I (NEB, Cat # M0293)
  • Qubit RNA HS Assay Kit (ThermoFisher, Q32852)
  • Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)

Instrumental
  • Mezclador Hula (mezclador giratorio suave)
  • Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
  • Microcentrífuga
  • Mezclador vórtex
  • Termociclador
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Cubeta con hielo
  • Temporizador
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Pre-chilled freezer block at -20° C for 200 µl tubes (e.g. Eppendorf cat # 022510509)
Equipo opcional
  • Agilent Bioanalyzer (or equivalent)

For this protocol, you will need 4 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 200 ng total RNA.

Sequence-specific primer sequence

The cDNA RT Adapter (CRTA) supplied in the cDNA-PCR Sequencing Kit (SQK-PCS111) is designed to ligate to poly(A) tailed RNAs. However, you can design your own primer to target a specific RNA sequence (for example, to only sequence 16S rRNA) for subsequent cDNA sequencing.

To perform this type of targeting, order the oligo below, replacing the [sequence-specific] region with ~22 bases complementary to the 3' end of your target RNA sequence. Please note that the exact number of bases may need to be optimised depending on the sequence targeted.

5' - ACTTGCCTGTCGCTCTATCTTC - [sequence-specific] - 3'

We recommend starting with a stock concentration of 2 μM. However, you may find it useful to perform a titration of different primer concentrations. All primers should be HPLC purified.

Muestra inicial de ARN

Es importante que la muestra inicial de ARN posea la cantidad y calidad requerida. Usar demasiado ARN, poco o de mala calidad (p. ej., que esté muy fragmentado o que contenga contaminantes químicos), puede afectar a la preparación de la biblioteca.

Input DNA/RNA QC.

Para más información sobre cómo utilizar ARN como muestra inicial, consulte los enlaces a continuación.

Estos documentos pueden encontrarse en la página DNA/RNA Handling page.

Reactivos de otros fabricantes

Oxford Nanopore Technologies ha probado y recomienda el uso de todos los reactivos de otros fabricantes citados en este protocolo. No se han evaluado otras alternativas.

Recomendamos preparar estos reactivos siguiendo las instrucciones del fabricante.

IMPORTANTE

Rapid Adapter T (RAP T) used in this kit and protocol is not interchangeable with other sequencing adapters.

cDNA-PCR Sequencing Kit (SQK-PCS111) contents

SQK-PCS111 1

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Strand Switching Primer II SSPII Violet 1 20 µl
RT Primer RTP Yellow 1 10 µl
cDNA RT Adapter CRTA Amber 1 10 µl
Rapid Adapter T RAP T Green 1 10 µl
Annealing Buffer AB Orange 1 10 µl
cDNA Primer cPRM White cap, grey label 1 40 µl
Elution Buffer EB Black 1 500 µl
Short Fragment Buffer SFB Clear 1 1,800 µl
Sequencing Buffer II SBII Red 1 500 µl
Loading Beads II LBII Pink 1 360 µl
Loading Solution LS White cap, pink label 1 400 µl
Flush Buffer FB Blue 6 1,170 µl
Flush Tether FLT White cap, purple label 1 200 µl

3. Computer requirements and software

Requisitos informáticos para el MinION Mk1B

Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.

Requisitos informáticos para el MinION Mk1C

El MinION Mk1C contiene ordenador y pantalla integrados, lo que elimina la dependencia de cualquier accesorio para generar y analizar datos de nanoporos. Encontrará más información en el documento MinION Mk1C IT Requirements.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000

4. Reverse transcription and strand-switching

Material
  • 4 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 200 ng total RNA
  • Custom-ordered sequence-specific primer
  • Strand Switching Primer II (SSPII)

Consumibles
  • Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
  • 10 mM dNTP solution (e.g. NEB cat # N0447)
  • Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
  • RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes
  • Qubit RNA HS Assay Kit (ThermoFisher, Q32852)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)

Instrumental
  • Microcentrífuga
  • Termociclador
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Pre-chilled freezer block at -20° C for 200 µl tubes (e.g. Eppendorf cat # 022510509)

Thaw the following reagents and spin down briefly using a microfuge, before mixing as indicated in the table below, and place on ice.

Reagent 1. Thaw at room temperature 2. Briefly spin down 3. Mix well by pipetting
Custom-ordered sequence-specific primer
Strand Switching Primer II (SSPII)
RNaseOUT Not frozen
10 mM dNTP solution
Maxima H Minus Reverse Transcriptase Not frozen
Maxima H Minus 5x RT Buffer Mix by vortexing

Prepare the RNA in nuclease-free water.

  • Transfer 4 ng Poly(A)+ RNA, or 200 ng total RNA into a 1.5 ml Eppendorf DNA LoBind tube
  • Adjust the volume to up to 9 μl with nuclease-free water
  • Mix by flicking the tube to avoid unwanted shearing
  • Spin down briefly in a microfuge

Prepare the following reaction in a 0.2 ml PCR tube:

Reagent Volume
RNA 9 μl
Custom-ordered sequence-specific primer, diluted to 2 μM 1 μl
10 mM dNTPs 1 μl
Total volume 11 μl

Mix gently by flicking the tube, and spin down.

Incubate at 65°C for 5 minutes and then snap cool on a pre-chilled freezer block for 1 minute.

To the same 0.2 ml PCR tube, add the following:

Reagent Volume
Maxima H Minus 5x RT Buffer 4 μl
RNaseOUT 1 μl
Nuclease-free water 1 μl
Strand Switching Primer II (SSPII) 2 μl
Total (including all reagents) 19 μl
CONSEJO

Strand Switching Primer II (SSPII) base pairs to the deoxycytidine present at the 5' end of the first cDNA strand synthesised. This allows the reverse transcriptase to "strand-switch" for synthesis of the second cDNA strand.

Mix gently by flicking the tube, and spin down.

Incubate at 42°C for 2 minutes in the thermal cycler.

Add 1 µl of Maxima H Minus Reverse Transcriptase. The total volume is now 20 µl.

Mix gently by flicking the tube, and spin down.

Incubate using the following protocol using a thermal cycler:

Cycle step Temperature Time No. of cycles
Reverse transcription and strand-switching 42°C 90 mins 1
Heat inactivation 85°C 5 mins 1
Hold 4°C
FIN DEL PROCESO

Take your samples forward into the next step. However, at this point it is also possible to store the sample at -20°C overnight.

5. Selecting for full-length transcripts by PCR

Material
  • cDNA Primer (cPRM)
  • Elution Buffer (EB)

Consumibles
  • Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Exonuclease I (NEB, Cat # M0293)
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Freshly prepared 70% ethanol in nuclease-free water
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)

Instrumental
  • Termociclador
  • Mezclador vórtex
  • Mezclador Hula (mezclador giratorio suave)
  • Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
  • Cubeta con hielo
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Agilent Bioanalyzer (or equivalent)
IMPORTANTE

The 22.5 μl of reverse-transcribed sample is used to make 4x 50 μl PCR reactions which will be pooled at a later stage, with 5 μl of reverse-transcribed sample in each PCR reaction. Do NOT use all 22.5 μl of the reverse transcription reaction in a single PCR reaction.

Reverse transcriptase is a PCR inhibitor and the RT material must be diluted enough for PCR to take place.

Thaw the cDNA Primer (cPRM), Elution Buffer (EB). LongAmp Hot Start Taq 2X Master Mix and Exonuclease I at room temperature, spin down and pipette mix. Store the reagents on ice.

Spin down the reverse-transcribed RNA sample.

Prepare four fresh 0.2 ml PCR tubes and add 5 μl of reverse-transcribed sample per tube.

In each of the 0.2 ml PCR tubes containing the reverse-transcribed sample, prepare the following reaction at room temperature:

Reagent Volume
Reverse-transcribed sample (from previous step) 5 μl
cDNA Primer (cPRM) 1.5 μl
Nuclease-free water 18.5 μl
2x LongAmp Hot Start Taq Master Mix 25 μl
Total (including all reagents) 50 μl

Mix gently by pipetting.

Amplify using the following cycling conditions.

Cycle step Temperature Time No. of cycles
Initial denaturation 95°C 30 secs 1
Denaturation 95°C 15 secs 10-18*
Annealing 62°C 15 secs 10-18*
Extension 65°C 60 secs per kb 10-18*
Final extension 65°C 6 mins 1
Hold 4°C

*We recommend 14 cycles as a starting point. However, the number of cycles can be adjusted between the values shown according to experimental needs.

For further information, please read The effect of varying the number of PCR cycles in the PCR-cDNA Sequencing Kit document.

Add 1 μl Exonuclease I directly to each PCR tube. Mix by pipetting.

CONSEJO

Exonuclease I is added to remove any excess primers which have not successfully annealed.

Incubate the reaction at 37°C for 15 minutes, followed by 80°C for 15 minutes in the thermal cycler.

Pool the four PCR reactions (total 204 μl) in a clean 1.5 ml Eppendorf DNA LoBind tube.

Resuspend the AMPure XP beads by vortexing.

Add 160 µl of resuspended AMPure XP beads to the reaction.

Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.

Prepare 1 ml of fresh 70% ethanol in nuclease-free water.

Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 500 µl of freshly-prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repetir el paso anterior.

Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.

Remove the tube from the magnetic rack and resuspend pellet in 12 µl of Elution Buffer (EB).

Incubate at room temperature for 10 minutes.

Pellet the beads on the magnet until the eluate is clear and colourless.

Remove and retain 12 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Remove and retain the eluate which contains the cDNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
  • Dispose of the pelleted beads

For each sample, analyse 1 µl of the amplified cDNA for size, quantity and quality using a Qubit fluorometer and Agilent Bioanalyzer (or equivalent) for a QC check.

IMPORTANTE

Sometimes a high-molecular weight product is visible in the wells of the gel when the PCR products are run, instead of the expected smear. These libraries are typically associated with poor sequencing performance. We have found that repeating the PCR with fewer cycles can remedy this.

Take forward 15-25 fmol of amplified cDNA and make the volume up to 11 μl in Elution Buffer (EB).

Mass Molarity if fragment length = 0.5 kb Molarity if fragment length = 1.5 kb Molarity if fragment length = 3 kb
5 ng 16 fmol 5 fmol 3 fmol
10 ng 32 fmol 11 fmol 5 fmol
15 ng 49 fmol 16 fmol 8 fmol
20 ng 65 fmol 22 fmol 11 fmol
25 ng 81 fmol 27 fmol 13 fmol
50 ng 154 fmol 51 fmol 26 fmol

If the quantity of amplified cDNA is above 25 fmol, the remaining cDNA can be frozen and stored for another sequencing experiment (in this case, library preparation would start from the Adapter Addition step). We recommend avoiding multiple freeze-thaw cycles to prevent DNA degradation.

The new sequencing adapter used in Kit 11 chemistry has a higher capture rate, enabling lower flow cell loading amounts to give optimal pore occupancy.

CONSEJO

Recomendaciones de guardado de la biblioteca

Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.

6. Adapter addition

Material
  • Rapid Adapter T (RAP T)
  • Elution Buffer (EB)

Consumibles
  • 1.5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Microcentrífuga
  • Cubeta con hielo
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
IMPORTANTE

Rapid Adapter T (RAP T) used in this kit and protocol is not interchangeable with other sequencing adapters.

Spin down the Rapid Adapter T (RAP T) and place on ice.

Add 1 μl of Rapid Adapter T (RAP T) to the amplified cDNA library.

Mix well by pipetting and spin down.

Incubate the reaction for 5 minutes at room temperature.

Spin down briefly.

FIN DEL PROCESO

The prepared library is used for loading onto the flow cell. Store the library on ice until ready to load.

CONSEJO

Recomendaciones de guardado de la biblioteca

Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.

7. Priming and loading the SpotON flow cell

Material
  • Flush Buffer (FB)
  • Flush Tether (FLT)
  • Loading Beads II (LBII)
  • Sequencing Buffer II (SBII)
  • Loading Solution (LS)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)

Instrumental
  • MinION device
  • Pantalla protectora celdas de flujo MinION/GridION
  • SpotON Flow Cell
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
CONSEJO

Priming and loading a MinION flow cell

We recommend all new users watch the 'Priming and loading your flow cell' video before your first run.

Using the Loading Solution

We recommend using the Loading Beads II (LBII) for loading your library onto the flow cell for most sequencing experiments. However, if you have previously used water to load your library, you must use Loading Solution (LS) instead of water. Note: some customers have noticed that viscous libraries can be loaded more easily when not using Loading Beads II.

Thaw the Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing and spin down at room temperature.

To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.

Open the MinION device lid and slide the flow cell under the clip.

Press down firmly on the flow cell to ensure correct thermal and electrical contact.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.

Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Abrir el puerto de cebado de la celda de flujo, deslizando la tapa en el sentido de las agujas del reloj.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de solución en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Thoroughly mix the contents of the Loading Beads II (LBII) by pipetting.

IMPORTANTE

The Loading Beads II (LBII) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer II (SBII) 37.5 µl
Loading Beads II (LBII) mixed immediately before use, or Loading Solution (LS), if using 25.5 µl
DNA library 12 µl
Total 75 µl

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer II (SBII) and Loading Beads II (LBII).

Completar el cebado de la celda de flujo:

  1. Levantar suavemente la tapa del puerto de carga SpotON.
  2. Cargar 200 µl de solución en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.

Step 8 update - SPANISH

Flow Cell Loading Diagrams Step 9 SPANISH

IMPORTANTE

Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.

Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

Colocar la pantalla protectora de la siguiente manera:

  1. Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.

  2. Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.

J2264 - Light shield animation Flow Cell FAW optimised. SPANISH

ATENCIÓN

La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.

FIN DEL PROCESO

Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW.

8. Adquisición de datos e identificación de bases

Cómo empezar a secuenciar

Una vez la celda de flujo esté cargada, el experimento se pone en marcha desde MinKNOW, el programa de secuenciación que controla el dispositivo, la adquisición de datos y la identificación de bases en tiempo real. Encontrará intrucciones de uso más detalladas en el protocolo de MinKNOW.

Es posible utilizar y configurar MinKNOW para secuenciar de diferentes maneras:

  • En un ordenador conectado a un dispositivo de secuenciación, ya sea directamente o en remoto.
  • Directamente desde un dispositivo de secuenciación GridION, MinION Mk1C o PromethION 24/48.

Encontrará más información sobre el uso de MinKNOW en los manuales de usuario de los dispositivos:


Cómo empezar un experimento de secuenciación en MinKNOW:

1. Ir a la página de inicio y pulsar "Iniciar secuenciación".

2. Introducir los datos del experimento, como el nombre, la posición de la celda de flujo y el identificador de muestra.

3. En la pestaña Kit, seleccionar el kit de secuenciación utilizado durante la preparación de la biblioteca.

4. Configurar los parámetros de secuenciación y salida del experimento o dejar la configuración por defecto en la pestaña Configuración del experimento.

Nota: Si la identificación de bases estaba desactivada durante la configuración de un experimento, se puede activar en MinKNOW en la fase posejecución. Para más información, consulte el protocolo de MinKNOW.

5. En la página de Inicio, pulsar Iniciar la secuenciación.

Análisis de datos

Una vez la secuenciación ha finalizado, es posible reutilizar o devolver la celda de flujo, como se describe en la sección sobre Reutilización o retorno de celdas de flujo.

Tras secuenciar e identificar las bases, es posible analizar los datos. Si desea más información sobre las opciones de identificación de bases y de análisis posterior, consulte el documento Data Analysis.

En la sección Análisis posterior, se describen otras opciones para analizar los datos.

9. Reutilización y devoluciones de las celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a 2-8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

Nota: Antes de proceder a su devolución, las celdas de flujo deben lavarse con agua desionizada.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

10. Análisis posterior

Análisis posterior a la identificación de bases

Existen varias opciones para completar el análisis de los datos de bases identificadas:

1. Flujos de trabajo de EPI2ME

A fin de realizar un análisis en profundidad de los datos, Oxford Nanopore Technologies ofrece una serie de tutoriales sobre bioinformática y flujos de trabajo, que están disponibles en EPI2ME. La plataforma proporciona un espacio donde los flujos de trabajo que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.

2. Herramientas de análisis para la investigación

Para realizar un análisis de datos más exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y flujos de trabajo bioinformáticos, disponibles en EPI2ME Labs, que encontrará en la sección del mismo nombre de la comunidad Nanopore. La plataforma proporciona un espacio donde los proyectos que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.

3. Herramientas de análisis desarrolladas por la comunidad

Si no se proporciona en ninguno de los recursos anteriores un método de análisis que responda a las necesidades de investigación requeridas, consulte el centro de recursos Resource Centre y busque herramientas bioinformáticas para su aplicación. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y cartera de productos en desarrollo para analizar los datos de la secuenciación por nanoporos. La mayoría de ellas está disponible en GitHub. Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/programas informáticos.

11. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Baja calidad de la muestra

Observación Posible causa Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

12. Issues during the sequencing run

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que después de verificar la celda de flujo

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales.

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

Longitud de lectura más corta de lo esperado

Observación Posible causa Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles.
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones:

1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte la página Plant leaf DNA extraction method.
2. Limpiar usando el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación

Observación Posible causa Comentarios y acciones recomendadas
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo.

Fluctuación de la temperatura

Observación Posible causa Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez acabado el tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Para obtener más información sobre el control de temperatura de MinKNOW Mk 1B, consulte la sección de preguntas frecuentes, FAQ.

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 10/9/2024

Document options

MinION