Main menu

Using MinION to characterize dog skin microbiota through full-length 16S rRNA gene sequencing approach


The most common strategy to assess microbiota is sequencing specific hypervariable regions of 16S rRNA gene using 2nd generation platforms (such as MiSeq or Ion Torrent PGM). Despite obtaining high-quality reads, many sequences fail to be classified at the genus or species levels due to their short length. This pitfall can be overcome sequencing the full-length 16S rRNA gene (1,500bp) by 3rd generation sequencers. We aimed to assess the performance of nanopore sequencing using MinION on characterizing microbiota complex samples. First set-up step was performed using a staggered mock community (HM-783D). Then, we sequenced a pool of several dog skin microbiota samples previously sequenced by Ion Torrent PGM. Sequences obtained for full-length 16S rRNA with degenerated primers retrieved increased richness estimates at high taxonomic level (Bacteria and Archaea) that were missed with short-reads. Besides, we were able to obtain taxonomic assignments down to species level, although it was not always feasible due to: i) incomplete database; ii) primer set chosen; iii) low taxonomic resolution of 16S rRNA gene within some genera; and/or iv) sequencing errors. Nanopore sequencing of the full-length 16S rRNA gene using MinION with 1D sequencing kit allowed us inferring microbiota composition of a complex microbial community to lower taxonomic levels than short-reads from 2nd generation sequencers.

Authors: Anna Cusco, Joaquim Vines, Sara D'Andreano, Francesca Riva, Joaquim Casellas, Armand Sanchez, Olga Francino

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag