Main menu

Uncovering gut prophage biology using long-read metagenomics


Abstract Gut bacteriophages profoundly impact microbial ecology and human health, yet they are greatly understudied. Using deep, long-read bulk metagenomic sequencing, a technique that overcomes fundamental limitations of short-read approaches, we tracked prophage integration dynamics in 12 longitudinal stool samples from six healthy individuals, spanning a two-year timescale. While most prophages remain stably integrated into their host over two years, we discover that ~5% of phages are dynamically gained or lost from persistent bacterial hosts. Within the same sample, we find evidence of population heterogeneity in which identical bacterial hosts with and without a given integrated prophage coexist simultaneously. Furthermore, we demonstrate that phage induction, when detected, occurs predominantly at low levels (1-3x coverage compared to the host region). Interestingly, we identify multiple instances of integration of the same phage into bacteria of different taxonomic families, challenging the dogma that phage are specific to a host of a given species or strain. Lastly, we describe a new class of phages, which we name “IScream phages”. These phages co-opt bacterial IS30 transposases to mediate their integration, representing a previously unrecognized form of phage domestication of selfish bacterial elements. Taken together, these findings illuminate fundamental aspects of phage-bacterial dynamics in the human gut microbiome and expand our understanding of the evolutionary mechanisms that drive horizontal gene transfer and microbial genome plasticity in this ecosystem.

Authors: Angela Hickey, Graduate Student, Stanford University

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag