Main menu

Two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing


Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long-reads reveals the true complexity of processing, however the relatively high error rates of long-read technologies can reduce the accuracy of intron identification.

Here we present a two-pass approach, combining alignment metrics and machine-learning-derived sequence information to filter spurious examples from splice junctions identified in long-read alignments. The remaining junctions are then used to guide realignment. This method, available in the software package 2passtools (https://github.com/bartongroup/2passtools), improves the accuracy of spliced alignment and transcriptome annotation without requiring orthogonal information from short read RNAseq or existing annotations.

Authors: Matthew T. Parker, Geoffrey J. Barton, Gordon G. Simpson

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag