Main menu

Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome


Extensive and complex links exist between transposable elements (TEs) and satellite DNA (satDNA), which are the two largest fractions of eukaryotic genome. These relationships have a crucial effect on genome structure, function and evolution. Here, we report a novel case of mutual relationships between TEs and satDNA. In the genomes of Chenopodium s. str. species, the deletion derivatives of tnp2 conserved domain of the newly discovered CACTA-like TE Jozin are involved in generating monomers of the most abundant satDNA family of the Chenopodium satellitome.

The analysis of the relative positions of satDNA and different TEs utilizing assembled Illumina reads revealed several associations between satDNA arrays and the transposases of putative CACTA-like elements when an ~ 40 bp fragment of tnp2 served as the start monomer of the satDNA array. The high degree of identity of the consensus satDNA monomers of the investigated species and the tnp2 fragment (from 82.1 to 94.9%) provides evidence of the genesis of CficCl-61-40 satDNA family monomers from analogous regions of their respective parental elements. The results were confirmed via molecular genetic methods and Oxford Nanopore sequencing.

The discovered phenomenon leads to the continuous replenishment of species genomes with new identical satDNA monomers, which in turn may increase species satellitomes similarity.

Authors: Alexander Belyayev, Jiřina Josefiová, Michaela Jandová, Václav Mahelka, Karol Krak, Bohumil Mandák

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag