Single-cell transcriptomics with cDNA prepared using 10X Genomics

Overview

Single-cell transcriptomics method:

  • Requires cDNA amplicons produced using the 10X Genomics system
  • High output
  • PCR required

For Research Use Only

This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.

Document version: SST_v9148_v111_revH_12Jan2022

1. Overview of the protocol

IMPORTANTE

This is a Legacy product

This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.

PCR-cDNA Sequencing Kit features

This kit is highly recommended for users who:

  • would like to identify and quantify full-length transcripts
  • want to explore isoforms, splice variants and fusion transcripts using full-length cDNAs
  • would like to generate a large number of cDNA reads

Introduction to the single-cell transcriptomics protocol

This protocol describes how to carry out sequencing of cDNA from single cells using the PCR-cDNA Sequencing Kit (SQK-PCS111). You will need to have reverse-transcribed single cell mRNA into cDNA using the 10X Genomics Next GEM Single Cell 3' Kit (V3.1).

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Have previously-prepared single-cell barcoded cDNA using the 10X Genomics Next GEM Single Cell 3' Kit (V3.1). The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

You will need to:

  • Biotin tag your cDNAs and amplify by PCR
  • Pull down the amplicons on streptavidin beads, and amplify again by PCR
  • Attach sequencing adapters to the PCR products
  • Prime the flow cell, and load your cDNA library into the flow cell

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Analyse the data further using a pipeline of your choice
IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

  • PCR-cDNA Sequencing Kit (SQK-PCS111)
  • R9.4.1 flow cells (FLO-MIN106)
  • Flow Cell Wash Kit (EXP-WSH004)

2. Equipment and consumables

Material
  • 10 ng of cDNA amplicons prepared using 10X Genomics Next GEM Single Cell 3' Kits (V3.1)
  • cDNA-PCR Sequencing Kit (SQK-PCS111)
  • Custom-ordered oligo at 10 μM: [Btn]Fwd_3580_partial_read1_defined (sequence provided below)
  • Custom-ordered oligo at 10 μM: Rev_PR2_partial_TSO_defined_for_5'_cDNA (sequence provided below)

Consumibles
  • M280 streptavidin, 10 μg/μl (Invitrogen, 11205D)
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • 1 M Tris-HCl, pH 7.5
  • 5 M NaCl (Sigma, 71386)
  • 0.5 M EDTA, pH 8 (Thermo Scientific, R1021)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Freshly prepared 70% ethanol in nuclease-free water
  • Agilent Technologies DNA 12000 Kit
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes
  • 15 ml Falcon tubes

Instrumental
  • Mezclador Hula (mezclador giratorio suave)
  • Magnetic rack (e.g. Invitrogen DynaMag-2 Magnet, Cat # 12321D)
  • Microcentrífuga
  • Mezclador vórtex
  • Thermal cycler
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Cubeta con hielo
  • Temporizador
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Agilent Bioanalyzer (or equivalent)

For this protocol, you will need 10 ng amplified cDNA amplicons prepared using 10X Genomics Next GEM Single Cell 3' Kits (V3.1).

IMPORTANTE

10X Genomics kits

Note: This protocol is compatible and fully supported with 10X Genomics Next GEM Single Cell 3' Kit (V3.1) and the Visium Spatial Gene Expression Kit (V1). Other versions of the kits are not supported.

The 10X Genomics Next GEM Single Cell 5' Kit (V2) is compatible with our Ligation sequencing V14 - Single-cell transcriptomics with 5' cDNA prepared using 10X Genomics on PromethION (SQK-LSK114) protocol.

Cantidad de muestra inicial de ADN

Cómo realizar un control de calidad de la muestra inicial de ADN

Es importante que la muestra de ADN cumpla con los requisitos de cantidad y calidad. Usar demasiado ADN, poco o de mala calidad (p. ej., que esté muy fragmentado, que contenga ARN o contaminantes químicos), puede afectar a la preparación de la biblioteca.

Para realizar un control de calidad en la muestra de ADN, consulte el protocolo Input DNA/ RNA QC

Contaminantes químicos

Dependiendo de cómo se extraiga el ADN de la muestra cruda, ciertos contaminantes químicos pueden permanecer en el ADN purificado, lo cual afecta la eficacia de la preparación de la biblioteca y la calidad de la secuenciación. Encontrará más información sobre contaminantes en la página Contaminants de la comunidad Nanopore.

cDNA-PCR Sequencing Kit (SQK-PCS111) contents

SQK-PCS111 1

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Strand Switching Primer II SSPII Violet 1 20 µl
RT Primer RTP Yellow 1 10 µl
cDNA RT Adapter CRTA Amber 1 10 µl
Rapid Adapter T RAP T Green 1 10 µl
Annealing Buffer AB Orange 1 10 µl
cDNA Primer cPRM White cap, grey label 1 40 µl
Elution Buffer EB Black 1 500 µl
Short Fragment Buffer SFB Clear 1 1,800 µl
Sequencing Buffer II SBII Red 1 500 µl
Loading Beads II LBII Pink 1 360 µl
Loading Solution LS White cap, pink label 1 400 µl
Flush Buffer FB Blue 6 1,170 µl
Flush Tether FLT White cap, purple label 1 200 µl

Custom-ordered oligo sequences

Order the following HPLC-purified oligos at 100 μM, and dilute to 10 μM in TE buffer for use in the Pre-pull-down step of the library prep.

Name Sequence
[Btn]Fwd_3580_partial_read1_defined 5'-/5Biosg/CAGCACTTGCCTGTCGCTCTATCTTC
CTACACGACGCTCTTCCGATCT-3'
Rev_PR2_partial_TSO_defined 5'-CAGCTTTCTGTTGGTGCTGATATTGCAAGCAGTGGTA
TCAACGCAGAG-3'

3. Computer requirements and software

Requisitos informáticos para el MinION Mk1B

Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data in real time and processes it into basecalls. You will be using MinKNOW for every sequencing experiment. MinKNOW can also demultiplex reads into folders for each barcode found in Oxford Nanopore library preparation kits, and basecall/demultiplex data after a sequencing run has completed. MinKNOW use For instructions on how to run the MinKNOW software, please refer to the relevant section in the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You can the EPI2ME platform if you would like further analysis of your data post-basecalling. Please note that EPI2ME does not currently offer a workflow for single-cell transcriptomics analysis. EPI2ME installation and use For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.

Guppy (optional)

The Guppy command-line software can be used instead of MinKNOW for basecalling and demultiplexing reads into folders for each barcode found in Oxford Nanopore library preparation kits. You can use it if you would like to re-analyse old data, or integrate basecalling into your analysis pipeline. Guppy installation and use If you would like to use the Guppy software, please refer to the Guppy protocol.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en los primeros tres meses desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000

4. Pre-pull-down PCR

Material
  • 10 ng of cDNA amplicons prepared using 10X Genomics Next GEM Single Cell 3' Kits (V3.1)
  • Custom ordered-oligo at 10 μM: [Btn]Fwd_3580_partial_read1_defined (sequence provided in Equipment and Consumables)
  • Custom-ordered oligo at 10 μM: Rev_PR2_partial_TSO_defined (sequence provided in Equipment and Consumables)

Consumibles
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
  • Freshly prepared 70% ethanol in nuclease-free water
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • 0.2 ml thin-walled PCR tubes

Instrumental
  • Termociclador
  • Microfuge
  • Mezclador Hula (mezclador giratorio suave)
  • Magnetic rack
  • Ice bucket with ice
  • P1000 pipette and tips
  • P200 pipette and tips
  • P100 pipette and tips
  • P20 pipette and tips
  • P2 pipette and tips

Set up the following biotin tagging reaction in a 0.2 ml thin-walled PCR tube:

Reagent Volume
cDNA template 10 ng, x μl
[Btn]Fwd_3580_partial_read1_defined, 10 μM 2 μl
Rev_PR2_partial_TSO_defined, 10 μM 2 μl
Nuclease-free water 21-x μl
LongAmp Hot Start Taq 2X Master Mix 25 μl
Total 50 μl

Amplify using the following cycling conditions:

Cycle step Temperature Ramp rate Time No. of cycles
Initial denaturation 94°C max 3 min 1
Denaturation

Annealing ramp-down

Annealing

Extension
94°C

66°C down to 58°C

58°C

65°C
max

0.2°C/s

max

max
30 sec

40 sec

50 sec

6 mins


4
Final extension 65°C max 10 min 1
Hold 4°C - -

Resuspend the AMPure XP beads by vortexing.

Transfer the sample to a clean 1.5 ml Eppendorf DNA LoBind tube.

Add 40 µl of resuspended AMPure XP beads to the reaction and mix by flicking the tube.

Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.

Prepare 500 μl of fresh 70% ethanol in nuclease-free water.

Spin down the samples and pellet the beads on a magnet until the eluate is clear and colourless. Keep the tubes on the magnet and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repeat the previous step.

Briefly spin down and place the tubes back on the magnet. Pipette off any residual ethanol. Allow to dry for 30 seconds, but do not dry the pellet to the point of cracking.

Remove the tube from the magnetic rack and resuspend the pellet in 10 µl nuclease-free water. Spin down and incubate for 2 minutes at room temperature.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove and retain 10 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

5. Pull-down

Consumibles
  • 1 M Tris-HCl, pH 7.5
  • 5 M NaCl (Sigma, 71386)
  • 0.5 M EDTA, pH 8 (Thermo Scientific, R1021)
  • M280 streptavidin, 10 μg/μl (Invitrogen, 11205D)
  • 15 ml Falcon tubes
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • 0.2 ml thin-walled PCR tubes
Instrumental
  • Vortex mixer
  • Microfuge
  • Mezclador Hula (mezclador giratorio suave)
  • Magnetic rack
  • Ice bucket with ice
  • P1000 pipette and tips
  • P200 pipette and tips
  • P100 pipette and tips
  • P20 pipette and tips
  • P2 pipette and tips

Prepare 4 ml of 2X wash/bind buffer (10 mM Tris-HCl pH 7.5, 2 M NaCl, 1 mM EDTA).

Reagent Stock concentration Final concentration Volume
Tris-HCl pH 7.5 1 M 10 mM 40 μl
NaCl 5 M 2 M 1600 μl
EDTA 0.5 M 1 mM 8 μl
Nuclease-free water - - 2352 μl
Total - - 4000 μl

Transfer 3.5 ml of the 2X wash/bind buffer to a fresh 15 ml Falcon tube and add 3.5 ml of nuclease-free water to make 7 ml of 1X wash/bind buffer (5 mM Tris-HCl pH 7.5, 1 M NaCl, 0.5 mM EDTA).

Resuspend the M280 streptavidin beads (10 μg/μl) by vortexing.

Transfer 5 μl of the streptavidin beads to a clean 1.5 ml Eppendorf DNA LoBind tube.

Add 1 ml of 1X wash/bind buffer and vortex the beads with buffer for 5 seconds. Pellet the beads on a magnet for two minutes, then pipette off the supernatant.

Repeat the previous step two more times for a total of three washes.

Resuspend the beads in 10 μl of 2X wash/bind buffer to achieve a final bead concentration of 5 μg/μl.

IMPORTANTE

It is critical that 2X buffer is used for this step. Using 1X buffer will result in inefficient binding.

Add 10 μl of 5 μg/μl prepared beads (50 μg beads total) to the tube with 10 μl of biotinylated cDNA.

Incubate on a Hula mixer (rotator mixer) for 20 minutes at room temperature.

Add 1 ml of 1X wash/bind buffer and vortex the DNA and beads with buffer for 5 seconds. Pellet the beads on a magnet for two minutes, then pipette off the supernatant. Take care to not aspirate any of the beads.

Repeat the previous step two more times for a total of three washes.

Add 200 μl of 10 mM Tris-HCl pH 7.5 and vortex the beads for 5 seconds.

Spin down and place the tube back on the magnet for three minutes. Pipette off the supernatant.

Remove the tube from the magnetic rack and resuspend the pellet in 20 μl of nuclease-free water. Vortex for 5 seconds and briefly spin down to collect the amplicon-bead conjugate.

6. Post-pull-down PCR

Material
  • cDNA Primer (cPRM)
  • Elution Buffer from the Oxford Nanopore kit (EB)

Consumibles
  • LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
  • Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Freshly prepared 70% ethanol in nuclease-free water
  • 0.2 ml thin-walled PCR tubes
  • Tubos de 1,5 ml Eppendorf DNA LoBind

Instrumental
  • Termociclador
  • Vortex mixer
  • Hula mixer (rotator mixer)
  • Ice bucket with ice
  • P1000 pipette and tips
  • P200 pipette and tips
  • P100 pipette and tips
  • P20 pipette and tips
  • Pipeta y puntas P10
  • P2 pipette and tips
  • Fluorímetro Qubit (o equivalente para el control de calidad)

In a 0.2 ml thin-walled PCR tube, prepare the following PCR reaction:

Reagent Volume
cPRM 1 μl
Nuclease-free water 4 μl
LongAmp Hot Start Taq 2X Master Mix 25 μl
Total 30 μl

Resuspend the amplicon-bead conjugate by pipetting and then transfer 20 μl of the conjugate into the 0.2 ml thin-walled PCR tube containing the PCR reaction. Mix by pipetting.

Do not spin down the tube; transfer immediately to the thermal cycler and amplify using the following cycling conditions:

| Cycle step | Temperature | Time | No. of cycles | | ---------- | ---------- | ---------- | ---------- | ---------- | | Initial denaturation | 94°C | 3 min | 1 | | Denaturation

Annealing

Extension | 94°C

62°C

65°C | 15 s

15 s

6 min |

4 | | Final extension | 65°C | 10 min | 1 | | Hold | 4°C | ∞ | - |

Resuspend the AMPure XP beads by vortexing.

Transfer the sample to a clean 1.5 ml Eppendorf DNA LoBind tube.

Add 40 µl of resuspended AMPure XP beads to the reaction and mix by flicking the tube.

Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.

Prepare 500 μl of fresh 70% ethanol in nuclease-free water.

Centrifugar la muestra y precipitar en un imán hasta que el sobrenadante se vuelva claro e incoloro. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repeat the previous step.

Briefly spin down and place the tubes back on the magnet for the beads to pellet. Pipette off any residual ethanol. Allow to dry for 30 seconds, but do not dry the pellets to the point of cracking.

Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB).

Pellet the beads on the magnet until the eluate is clear and colourless.

Remove and retain 15 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

Quantify 1 µl of eluted sample using a Qubit fluorometer - recovery aim >50 ng total.

7. Adapter addition

Material
  • Elution Buffer from the Oxford Nanopore kit (EB)
  • Rapid Adapter T (RAP T)

Consumibles
  • 1.5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Microcentrífuga
  • Cubeta con hielo
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2

Analyse 1 µl of sample using the Agilent Bioanalyzer. Determine the average amplicon size from this data, and use this to calculate the input sample volume for the next step.

Calculate the required sample volume for 35 fmol and dilute this into 12 μl of EB.

Add 0.5 μl of Rapid Adapter T (RAP T) to the amplified cDNA library.

Mix well by pipetting and spin down.

Incubate the reaction for 5 minutes at room temperature.

FIN DEL PROCESO

The prepared library is used for loading onto the flow cell. Store the library on ice until ready to load.

8. Priming and loading the SpotON flow cell

Material
  • Sequencing Buffer II (SBII)
  • Loading Beads II (LBII)
  • Flush Buffer (FB)
  • Flush Tether (FLT)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)

Instrumental
  • MinION device
  • SpotON Flow Cell
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pantalla protectora para celdas de flujo MinION
CONSEJO

Cebado y carga de la celda de flujo

Se recomienda a los nuevos usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.

Using the Loading Solution

We recommend using the Loading Beads II (LBII) for loading your library onto the flow cell for most sequencing experiments. However, if you have previously used water to load your library, you must use Loading Solution (LS) instead of water. Note: some customers have noticed that viscous libraries can be loaded more easily when not using Loading Beads II.

Thaw the Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down the SBII and FLT at room temperature.

Mix the Sequencing Buffer II (SBII), Flush Buffer (FB), Flush Tether (FLT) and Loading Solution (LS, if using) tubes by vortexing. Spin down the SBII and FLT at room temperature.

Prepare the flow cell priming mix: Add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing.

Open the MinION Mk1B lid and slide the flow cell under the clip.

Press down firmly on the flow cell to ensure correct thermal and electrical contact.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.

Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de mezcla de cebado en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Thoroughly mix the contents of the Loading Beads II (LBII) by pipetting.

IMPORTANTE

The Loading Beads II (LBII) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer II (SBII) 37.5 µl
Loading Beads II (LBII), mixed immediately before use, or Loading Solution (LS), if using 25.5 µl
DNA library 12 µl
Total 75 µl

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer II (SBII) and Loading Beads II (LBII) because the fuel in the buffer will start to be consumed by the adapter.

Completar el cebado de la celda de flujo:

  1. Levantar suavemente la tapa del puerto de muestra SpotON.
  2. Cargar 200 µl de mezcla de cebado en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.

Step 8 update - SPANISH

Flow Cell Loading Diagrams Step 9 SPANISH

IMPORTANTE

Para obtener resultados de secuenciación óptimos, instale la pantalla protectora justo después de cargar la biblioteca.

Recomendamos poner la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

Colocar la pantalla protectora de la siguiente manera:

  1. Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.

  2. Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.

J2264 - Light shield animation Flow Cell FAW optimised. SPANISH

ATENCIÓN

La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.

FIN DEL PROCESO

Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW.

9. Data acquisition and basecalling

Aspectos generales del análisis de datos de nanoporos

Para obtener una descripción completa del análisis de datos de nanoporos, que incluya distintas posibilidades para el análisis de identificación y postidentificicación de bases, consultar el documento Data Analysis.

Cómo empezar a secuenciar

El programa MinKNOW realiza el control del dispositivo de secuenciación, la adquisición de datos y la identificación de bases en tiempo real. Una vez que el usuario ha instalado MinKNOW en su ordenador, hay diferentes maneras de llevar a cabo la secuenciación:

1. Adquisición de datos e identificación de bases en tiempo real con el programa MinKNOW.

Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run".

2. Adquisición de datos e identificación de bases en tiempo real con el dispositivo GridION.

Seguir las instrucciones del manual de usuario de GridION.

3. Adquisición de datos e identificación de bases en tiempo real con el dispositivo MinION Mk1C.

Seguir las instrucciones del manual de usuario de MinION Mk1C.

4. Adquisición de datos e identificación de bases en tiempo real con el dispositivo PromethION.

Seguir las instrucciones de los manuales de usuario de PromethION o PromethION 2 Solo.

5. Adquisición de datos e identificación de bases posterior mediante MinKNOW.

Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run". Al configurar los parámetros del experimento, ajustar la pestaña Basecalling (Identificación de bases) en posición de APAGADO. Al terminar el experimento de secuenciación, seguir las instrucciones del apartado "Post-run analysis" del protocolo de MinKNOW.

10. Downstream analysis

EPI2ME provides a Nextflow-based workflow for the analysis of single-cell sequencing data.

The workflow, wf-single-cell, processes the FASTQ format sequence data prepared by the MinKNOW software. The workflow screens each sequence read for 10X cell barcode information and assigns reads to a cell of origin. A subset of sequences from “true” cells are dynamically filtered on the basis of the number of assigned sequence reads. These sequences are mapped to the reference genome, and tables of both gene and transcript abundance are prepared for each cell. These "cell barcode x gene" or transcript abundance information are used to prepare the familiar UMAP plots that may show the stratification of the cell types present within the sample.

For more information on this workflow, follow the link to the GitHub documentation.

11. Reutilización y devoluciones de las celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a 2-8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

Nota: Antes de proceder a su devolución, las celdas de flujo deben lavarse con agua desionizada.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

12. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Baja calidad de la muestra

Observación Posible causa Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

13. Issues during the sequencing run

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que después de verificar la celda de flujo

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales.

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

Longitud de lectura más corta de lo esperado

Observación Posible causa Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles.
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones:

1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte la página Plant leaf DNA extraction method.
2. Limpiar usando el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación

Observación Posible causa Comentarios y acciones recomendadas
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo.

Fluctuación de la temperatura

Observación Posible causa Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector están bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez acabado el tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo de secuenciación para asegurarse de que se encuentra a temperatura ambiente y con buena ventilación; a continuación, reinicie el proceso en MinKNOW. Para obtener más información sobre el control de temperatura de MinKNOW Mk 1B, consulte la sección de preguntas frecuentes, FAQ.

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 12/6/2023

Document options

MinION