Main menu

Long-read single-cell genome, transcriptome and open chromatin profiling links genotype to phenotypes


Cancer is a heterogenous disease and current single-cell multiomic methods only provide limited genomic information. Here, the authors utilised single-cell Oxford Nanopore sequencing to investigate tumour evolution and why some cancer patients relapse after anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. Using Oxford Nanopore sequencing, Pančíková, Cools, and Eftychiou et al. developed SPLONGGET, a custom workflow that simultaneously captures genomic, epigenomic, and transcriptomic information from individual cells. The authors applied this method to research samples isolated from a patient with leukaemia, revealing genetic changes linked to therapy resistance.

Watch Ruben Cools present this research at London Calling 2025

Sample type: bone marrow aspirates

Kit: Ligation Sequencing Kit

Authors: Alexandra Pančíková, Ruben Cools, Marios Eftychiou, Margo Aertgeerts, Joris Vande Velde, Heidi Segers, Jan Cools, Luuk Harbers, Jonas Demeulemeester

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Quick links

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

About Oxford Nanopore

Contact us News Media resources & contacts Investor centre Careers BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag