Main menu

Unsupervised Barcode Demultiplexing

  • Published on: June 19 2020

The current approaches to demultiplexing of barcoded reads typically use base called sequences and tend to render up to 20% of the reads unusable due to base calling errors. In contrast, Deepbinner (Wick et al., 2018) works with the raw signal by employing a convolutional neural network and loses only ≈ 5% of reads, while retaining the precision of ≈ 98%. We present a novel approach that also operates in the signal space, but is based on unsupervised learning.

Download the PDF

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Quick links

Intellectual property Cookie policy Corporate reporting Privacy policy Terms, conditions and policies Accessibility

About Oxford Nanopore

Contact us News Media resources & contacts Investor centre Careers BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag