A chromosome-level genome assembly of the parasitoid wasp, Cotesia glomerata (Hymenoptera: Braconidae)


Hymenopterans make up about 20% of all animal species, but most are poorly known and lack high-quality genomic resources. One group of important, yet under-studied hymenopterans, are parasitoid wasps in the family Braconidae. Among this under-studied group are braconid wasps in the genus Cotesia; a clade of ~1,000 species routinely used in studies of physiology, ecology, biological control, and genetics.

However, our ability to understand these organisms has been hindered by a lack of genomic resources. We helped bridge this gap by generating a high-quality genome assembly for the parasitoid wasp, Cotesia glomerata (Braconidae; Microgastrinae). We generated this assembly using multiple sequencing technologies, including Oxford Nanopore, whole-genome shotgun sequencing, and 3-D chromatin contact information (Hi-C). Our assembly is one of the most contiguous, complete, and publicly available hymenopteran genomes, represented by 3,355 scaffolds with a scaffold N50 of ~28Mb and a BUSCO score of ~99%.

Given the genome sizes found in closely related species, our genome assembly was ~50% larger than expected, which was apparently induced by runaway amplification of three types of repetitive elements: simple repeats, Long Terminal Repeats (LTRs), and Long Interspersed Nuclear Elements (LINEs). This assembly is another step forward for genomics across this hyper-diverse, yet understudied, order of insects. The assembled genomic data and metadata files are publicly available via Figshare (https://doi.org/10.6084/m9.figshare.13010549).

Authors: Brendan J Pinto, Jerome J Weis, Tony Gamble, Paul J Ode, Ryan Paul, Jennifer M Zaspel