Chromosomal rearrangements and loss of subtelomeric adhesins linked to clade-specific phenotypes in Candida auris

Candida auris is an emerging fungal pathogen of rising concern due to its increasing incidence, its ability to cause healthcare-associated outbreaks and antifungal resistance. Genomic analysis revealed that early cases of C. auris that were detected contemporaneously were geographically stratified into four major clades. Clade II, also termed East Asian clade, consists of the initial isolates described from cases of ear infection, is less frequently resistant to antifungal drugs and to date, the isolates from this group have not been associated with outbreaks. Here, we generate nearly complete genomes ('telomere-to-telomere') of an isolate of this clade and of the more widespread Clade IV. By comparing these to genome assemblies of the other two clades, we find that the Clade II genome appears highly rearranged, with 2 inversions and 9 translocations resulting in a substantially different karyotype. In addition, large subtelomeric regions have been lost from 10 of 14 chromosome ends in the Clade II genomes. We find that shorter telomeres and genome instability might be a consequence of a naturally occurring loss-of-function mutation in DCC1 exclusively found in Clade II isolates, resulting in a hypermutator phenotype. We also determine that deleted subtelomeric regions might be linked to clade-specific adaptation as these regions are enriched in Hyr/Iff-like cell surface proteins, novel candidate cell surface proteins, and an ALS-like adhesin. The presence of these cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggests an explanation for the different phenotypes observed between clades.

Authors: José F Muñoz, Rory M Welsh, Terrance Shea, Dhwani Batra, Lalitha Gade, Anastasia P Litvintseva, Christina A Cuomo