Main menu

Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures

  • Published on: December 2 2020
  • Source: bioRxiv

The characteristic ionic currents of nucleotide kmers are commonly used in analyzing nanopore sequencing readouts.

We present a graph convolutional network-based deep learning framework for predicting kmer characteristic ionic currents from corresponding chemical structures.

We show such a framework can generalize the chemical information of the 5-methyl group from thymine to cytosine by correctly predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de novo detection of nucleotide modifications.

Authors: Hongxu Ding, Ioannis Anastopoulos, Andrew D. Bailey IV, Joshua Stuart, Benedict Paten

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms, conditions and policies Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag