Main menu

pycoQC, interactive quality control for Oxford Nanopore Sequencing


pycoQC is a new tool to generate interactive quality control metrics and plots from basecalled nanopore reads or summary files generated by Albacore and Guppy. Although there are other open-source alternatives such as Nanoplot, MinionQC and toulligQC, pycoQC has several novel features:

  • Integration with the plotly Python charting library to create dynamic D3.js visualizations
  • Extensive Python API developed for interactive data exploration in Jupyter Notebooks
  • Simple command line interface to generate customisable interactive HTML reports
  • Multiprocessing FAST5 feature extraction program to generate a summary file directly from FAST5 files
  • Support for data generated by ONT MinION, GridION and PromethION devices, basecalled by Albacore 1.3+, Guppy 2.1.3+ or MinKNOW 18.12+

pycoQC is available at https://github.com/a-slide/pycoQC together with extensive documentation and some example Jupyter notebooks. The source code has been archived on Zenodo with the linked DOI: 10.5281/zenodo.1116396.

Authors: Adrien Leger, Tommaso Leonardi

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag