Sequential infection with influenza A virus followed by SARS-CoV-2 leads to more severe disease and encephalitis in a mouse model of COVID-19

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2, a recently emerged coronavirus that has rapidly caused a pandemic. Coalescence of a second wave of this virus with seasonal respiratory viruses, particularly influenza virus is a possible global health concern.

To investigate this, transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) were first infected with IAV followed by SARS-CoV-2. The host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 only.

Infection of mice with each individual virus resulted in a disease phenotype compared to control mice. Although, SARS-CoV-2 RNA synthesis appeared significantly reduced in the sequentially infected mice, these mice had a more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to singly infected or control mice. The sequential infection also exacerbated the extrapulmonary manifestations associated with SARS-CoV-2. This included a more severe encephalitis.

Taken together, the data suggest that the concept of “twinfection” is deleterious and mitigation steps should be instituted as part of a comprehensive public health response to the COVID-19 pandemic.

Authors: Jordan J. Clark, Rebekah Penrice-Randal, Parul Sharma, Anja Kipar, Xiaofeng Dong, Andrew Davidson, Maia Kavanagh Williamson, David A. Matthews, Lance Turtle, Tessa Prince, Grant L. Hughes, Edward I. Patterson, Ghada Shawli, Krishanthi Subramaniam, Jo Sharp, Lynn McLaughlin, En-Min Zhou, Joseph D. Turner, Amy E. Marriott, Stefano Colombo, Shaun H. Pennington, Giancarlo Biagini, Andrew Owen, Julian A. Hiscox, James P. Stewart