Next-generation technologies applied to age-old challenges in Madagascar

Madagascar is a biodiversity hotspot that is facing rapid rates of deforestation, habitat destruction, and poverty. Urgent action is required to document the status of biodiversity to facilitate efficacious conservation plans. With the recent advent of portable and affordable genetic technologies, it is now possible to take genomic approaches out of the lab and into the field.

Mobile genetics labs can produce scientifically reproducible data under field conditions, dramatically minimizing the time between sample collection and data analysis. Here, we show “proof of concept” by deploying miniPCR bio’s miniaturized thermal cycler alongside Oxford Nanopore’s MinION DNA sequencer in Madagascar.

Specifically, we deployed this technology at Anjajavy, northwestern Madagascar for rapid biodiversity assessment. We successfully extracted mouse lemur DNA, amplified and sequenced a phylogenetically informative mitochondrial gene (cytochrome-b; cytb), and thereby confirmed the presence of Danfoss’ mouse lemur (M. danfossi) within the Anjajavy Reserve.

We show that a mobile genetics lab can provide expeditious results, and allow scientists to conduct genetic analyses, potentially allowing for rapid interventions under emergency conditions in situ. Additionally, mobile labs offer powerful training opportunities for in-country scientists for whom training opportunities were previously confined to ex-situ locations.

By bringing genomic technologies to Madagascar and other economically challenged and biodiverse regions of the world, the next generation of scientists and conservationists can more fully implement their leadership roles. Local laboratory and training facilities are changing the polarity of research programs in Madagascar and empowering national researchers to take charge of environmental stewardship.

Authors: Marina B. Blanco, Lydia K. Greene, Fidisoa Rasambainarivo, Elizabeth Toomey, Rachel C. Williams, Lanto Andrianandrasana, Peter A. Larsen, Anne D. Yoder